cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A118815 Determinants of 5 X 5 matrices consisting of 25 consecutive primes.

Original entry on oeis.org

-4656, 1440, 2912, 2832, -10464, -768, -17376, 20384, -72976, -18944, 12672, 41184, -199776, 28944, -21104, 3552, 25488, 338448, -60192, 39952, -21792, -161904, 499488, -83424, -7440, 7440, -54288, -75456, 1641792, 42288
Offset: 1

Views

Author

Jonathan Vos Post, May 23 2006

Keywords

Comments

5 X 5 analog of A117330.

Examples

			a(1) = -4656 =
  | 2  3  5  7 11|
  |13 17 19 23 29|
  |31 37 41 43 47|
  |53 59 61 67 71|
  |73 79 83 89 97|.
		

Crossrefs

Programs

  • PARI
    a(n) = matdet(matrix(5,5,i,j,prime((n+j-1)+5*(i-1)))); \\ Michel Marcus, Jan 25 2021

A316558 Discriminant of characteristic polynomial of n X n matrix containing the first n^2 primes in increasing order.

Original entry on oeis.org

1, 85, 17467988, 2652709797555700, -31887567679999704368444416, -19545503919145188068282045605299993931776, 4067279303127129300135103866787550140697786459885666304000, 34322785008286059488919151392862698816528603867951539153613244229443277820002304000
Offset: 1

Views

Author

Robert Israel, Jul 06 2018

Keywords

Comments

a(n) is even for n >= 3.

Crossrefs

Cf. A067276.

Programs

  • Maple
    f:= n -> discrim(LinearAlgebra:-CharacteristicPolynomial(Matrix(n,n,[seq(ithprime(i),i=1..n^2)]),t),t):
    map(f, [$1..20]);
  • PARI
    a(n) = my(k = 0, m = matrix(n, n, x, y, prime(k=k+1))); poldisc(charpoly(m)); \\ Michel Marcus, Jul 07 2018

A319012 a(n) = Sum_{i=1..n} prime(n*(i - 1) + i).

Original entry on oeis.org

2, 9, 36, 99, 224, 407, 724, 1129, 1700, 2451, 3382, 4543, 5986, 7661, 9724, 12041, 14762, 17891, 21482, 25499, 29998, 35083, 40644, 46873, 53620, 61077, 69240, 78119, 87686, 98053, 109290, 121503, 134388, 148297, 162970, 178905, 195770, 213725, 232794
Offset: 1

Views

Author

Stefano Spezia, Sep 07 2018

Keywords

Comments

a(n) is the trace of the n X n matrix M(n) whose first row contains the first n primes in increasing order, the second row of M(n) contains the next n primes in increasing order, and so on (see examples below).
Conjecture: a(2) and a(3) are the only terms that are perfect squares.

Examples

			For n = 1 the matrix M(1) is
   2
with trace Tr(M(1)) = a(1) = 2.
For n = 2 the matrix M(2) is
   2,  3
   5,  7
with Tr(M(2)) = a(2) = 9.
For n = 3 the matrix M(3) is
   2,  3, 5
   7, 11, 13
  17, 19, 23
with Tr(M(3)) = a(3) = 36.
		

Crossrefs

Cf. A000040, A067276 (determinant of the matrices M).
Cf. A209297.

Programs

  • Maple
    a:=n->add(ithprime(n*(i-1)+i),i=1..n): seq(a(n),n=1..40); # Muniru A Asiru, Sep 17 2018
  • Mathematica
    Table[Tr[Partition[Array[Prime, n^2], n]], {n, 40}]
  • PARI
    a(n) = sum(i=1, n, prime(n*(i - 1) + i)); \\ Michel Marcus, Sep 07 2018

Formula

a(n) = Sum_{i=1..n} A000040(n*(i - 1) + i).
a(n) = Sum_{k=1..n} A000040(A209297(n, k)). - Michel Marcus, Mar 18 2020
a(n) ~ n^3*log(n). - Stefano Spezia, Jul 01 2021

A321685 Determinant of n X n matrix containing the first n^2 composites in increasing order.

Original entry on oeis.org

4, -12, 24, 0, -51, 0, 262, -126, 0, -1684, -47, 0, 480, 0, -854, 4349, 0, -2690, 10595, 0, 9074, 9680, 37734, -48262, 1200, -98037, 415504, -1687656, -1840201, 2208435, -24907680, -20571545, -2873052, 23511040, 255110496, 98995966, -17722962796, 3495484872
Offset: 1

Views

Author

Felix Fröhlich, Nov 17 2018

Keywords

Examples

			For n = 3: The matrix consisting of the initial 3^2 = 9 composites is
---        ---
|  4   6   8 |
|  9  10  12 |
| 14  15  16 |
---        ---
The determinant of the matrix is 24, so a(3) = 24.
		

Crossrefs

Programs

  • Mathematica
    composite[n_] := FixedPoint[n + PrimePi[#] + 1 &, n + PrimePi[n] + 1]; a[n_] := Det[ArrayReshape[Array[composite, n^2], {n, n}]]; Array[a, 40] (* Amiram Eldar, Nov 17 2018 after Robert G. Wilson v at A002808 *)
    Module[{nn=40,cmps},cmps=Select[Range[2nn^2],CompositeQ];Table[Det[ Partition[ Take[cmps,n^2],n]],{n,nn}]] (* Harvey P. Dale, Aug 10 2021 *)
  • PARI
    composite(n) = my(i=0); forcomposite(c=1, , i++; if(i==n, return(c)))
    compositepi(n) = my(i=0); if(n==4, return(1), forcomposite(c=1, n, i++)); i
    compositesquare(n) = if(n==1, return(Mat([4]))); my(s=""); forcomposite(c=1, composite(n^2), s=concat(s, Str(c)); if(compositepi(c)%n==0 && c!=composite(n^2), s=concat(s, "; "), if(c!=composite(n^2), s=concat(s, ", ")))); s=concat("[", s); s=concat(s, "]")
    a(n) = matdet(eval(compositesquare(n)))
    
  • PARI
    a(n) = my (m=matrix(n,n), r=1, c=1); forcomposite(k=1,, m[r,c] = k; r++; if (r>n, r=1; c++; if (c>n, return (matdet(m))))) \\ Rémy Sigrist, Nov 17 2018
    
  • Python
    from sympy import Array, Matrix, composite
    def A321685(n):
        return Matrix(Array((composite(i) for i in range(1,n**2+1)),(n,n))).det() # Chai Wah Wu, Sep 08 2020
Previous Showing 11-14 of 14 results.