cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A339382 Number of partitions of n into an even number of distinct primes (counting 1 as a prime).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 4, 4, 4, 6, 5, 5, 5, 6, 6, 7, 7, 9, 8, 9, 8, 11, 10, 11, 12, 14, 12, 15, 14, 17, 16, 17, 17, 22, 20, 22, 21, 25, 24, 28, 27, 31, 30, 33, 31, 39, 36, 40, 40, 46, 42, 49, 47, 54, 53, 58, 55, 67, 63, 70, 68
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2020

Keywords

Examples

			a(16) = 3 because we have [13, 3], [11, 5] and [7, 5, 3, 1].
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<1, n+1, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i, t) option remember; (p-> `if`(n=0, t,
          `if`(n>s(i), 0, b(n, i-1, t)+ `if`(p>n, 0,
           b(n-p, i-1, 1-t)))))(`if`(i<1, 1, ithprime(i)))
        end:
    a:= n-> b(n, numtheory[pi](n), 1):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 02 2020
  • Mathematica
    nmax = 75; CoefficientList[Series[(1/2) ((1 + x) Product[(1 + x^Prime[k]), {k, 1, nmax}] + (1 - x) Product[(1 - x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * ((1 + x) * Product_{k>=1} (1 + x^prime(k)) + (1 - x) * Product_{k>=1} (1 - x^prime(k))).
a(n) = (A036497(n) + A298602(n)) / 2.

A318156 Expansion of (1/(1 - x)) * Sum_{k>=1} x^(k*(2*k-1)) / Product_{j=1..2*k-1} (1 - x^j).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 55, 69, 85, 104, 127, 154, 186, 224, 268, 320, 381, 452, 534, 630, 741, 869, 1017, 1187, 1382, 1606, 1862, 2155, 2489, 2869, 3301, 3792, 4349, 4979, 5692, 6497, 7405, 8429, 9581, 10876, 12331, 13963, 15792, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067659.

Examples

			From _Gus Wiseman_, Jul 18 2021: (Start)
Also the number of strict integer partitions of 2n+1 of even length with exactly one odd part. For example, the a(1) = 1 through a(8) = 12 partitions are:
  (2,1)  (3,2)  (4,3)  (5,4)  (6,5)   (7,6)      (8,7)      (9,8)
         (4,1)  (5,2)  (6,3)  (7,4)   (8,5)      (9,6)      (10,7)
                (6,1)  (7,2)  (8,3)   (9,4)      (10,5)     (11,6)
                       (8,1)  (9,2)   (10,3)     (11,4)     (12,5)
                              (10,1)  (11,2)     (12,3)     (13,4)
                                      (12,1)     (13,2)     (14,3)
                                      (6,4,2,1)  (14,1)     (15,2)
                                                 (6,4,3,2)  (16,1)
                                                 (8,4,2,1)  (6,5,4,2)
                                                            (8,4,3,2)
                                                            (8,6,2,1)
                                                            (10,4,2,1)
Also the number of integer partitions of 2n+1 covering an initial interval and having even maximum and alternating sum 1.
(End)
		

Crossrefs

Partial sums of A067659.
The following relate to strict integer partitions of 2n+1 of even length with exactly one odd part.
- Allowing any length gives A036469.
- The non-strict version is A306145.
- The version for odd length is A318155 (non-strict: A304620).
- Allowing any number of odd parts gives A343942 (odd bisection of A067661).
A000041 counts partitions.
A027187 counts partitions of even length (strict: A067661).
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= proc(n) option remember; b(n$2, 0)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..60);
  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k - 1))/Product[(1 - x^j), {j, 1, 2 k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] - QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 18 2021 *)

Formula

a(n) = A036469(n) - A318155(n).
a(n) = A318155(n) - A078616(n).
a(n) ~ exp(Pi*sqrt(n/3)) * 3^(1/4) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018

A238208 The total number of 1's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, 14, 17, 20, 24, 28, 33, 38, 45, 52, 60, 69, 80, 91, 105, 120, 137, 156, 178, 202, 230, 261, 295, 334, 378, 426, 481, 542, 609, 685, 769, 862, 966, 1082, 1209, 1351, 1508, 1681, 1873, 2086, 2319, 2578
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).
Or: the number of partitions of n-1 into an even number of distinct parts >=2. - R. J. Mathar, May 11 2016

Examples

			a(10) = 3 because the partitions in question are: 7+2+1, 6+3+1, 5+4+1.
		

Crossrefs

Column k=1 of A238450.

Programs

  • Maple
    A238208 := proc(n)
        local a,L,Lset;
        a := 0 ;
        L := combinat[firstpart](n) ;
        while true do
            # check that parts are distinct
            Lset := convert(L,set) ;
            if nops(L) = nops(Lset) then
                # check that number is odd
                if type(nops(L),'odd') then
                    if 1 in Lset then
                        a := a+1 ;
                    end if;
                end if;
            end if;
            L := combinat[nextpart](L) ;
            if L = FAIL then
                return a;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, May 11 2016
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, t,
         `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+1, 1-t)))
        end:
    a:= n-> b(n-1, 2, 1):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 01 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i+1, t] + b[n-i, i+1, 1-t]]];
    a[n_] := b[n-1, 2, 1];
    a /@ Range[0, 100] (* Jean-François Alcover, May 17 2020, after Alois P. Heinz *)
  • PARI
    seq(n)={my(A=O(x^n)); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x)) + eta(x + A)/(1-x))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/2)} A067661(n-(2*j-1)) - Sum_{j=1..floor(n/2)} A067659(n-2*j).
G.f.: (1/2)*(x/(1+x))*(Product_{n>=1} 1 + x^n) + (1/2)*(x/(1-x))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 17 2020
From Peter Bala, Feb 02 2021: (Start)
a(n+1) = d(n) - ( d(n-1) + d(n-3) ) + ( d(n-4) + d(n-6) + d(n-8) ) - ( d(n-9) + d(n-11) + d(n-13) + d(n-15) ) + ( d(n-16) + d(n-18) + d(n-20) + d(n-22) + d(n-24) ) - ( d(n-25) + d(n-27) + d(n-29) + d(n-31) + d(n-33) + d(n-35) ) + ..., where d(n) = A000009(n) is the number of partitions of n into distinct parts, with the convention that d(n) = 0 for n < 0.
G.f.: x/(1 - x^2)*Sum_{n >= 0} (-1)^n*x^((n^2+n+1-(-1)^n)/2)/Product_{k = 1..n} 1 - x^k.
Alternative g.f.: ( Product_{k >= 1} 1 + x^k ) * x*Sum_{n >= 0} (-1)^n*x^(n^2)*(1 - x^(2*n+2))/(1 - x^2).
Faster converging g.f. (conjecture): Sum_{n >= 0} x^((n+1)*(2*n+1))/ Product_{k = 1..2*n} 1 - x^k. (End)

Extensions

a(51)-a(60) from R. J. Mathar, May 11 2016

A238209 The total number of 2's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 13, 16, 18, 22, 26, 30, 35, 41, 48, 55, 64, 73, 85, 97, 111, 127, 146, 165, 189, 214, 244, 276, 313, 353, 400, 451, 508, 572, 644, 722, 811, 909, 1018, 1139, 1273, 1421, 1586, 1768, 1968, 2191, 2436
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(11) = 3 because the partitions in question are: 8+2+1, 6+3+2, 5+4+2.
		

Crossrefs

Column k=2 of A238450.

Programs

  • Mathematica
    nmax = 100; With[{k=2}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    seq(n)={my(A=O(x^(n-1))); Vec(x^2*(eta(x^2 + A)/(eta(x + A)*(1+x^2)) + eta(x + A)/(1-x^2))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/4)} A067661(n-(2*j-1)*2) - Sum_{j=1..floor(n/4)} A067659(n-4*j).
G.f.: (1/2)*(x^2/(1+x^2))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^2/(1-x^2))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020

A238210 The total number of 3's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 12, 14, 17, 20, 23, 28, 32, 37, 44, 51, 58, 68, 78, 89, 103, 118, 134, 154, 175, 199, 227, 257, 291, 330, 373, 421, 475, 535, 602, 677, 760, 852, 955, 1069, 1196, 1336, 1491, 1663, 1853, 2063, 2296
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 3 because the partitions in question are: 8+3+1, 7+3+2, 5+4+3.
		

Crossrefs

Column k=3 of A238450.

Programs

  • Mathematica
    nmax = 100; With[{k=3}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    seq(n)={my(A=O(x^(n-2))); Vec(x^3*(eta(x^2 + A)/(eta(x + A)*(1+x^3)) + eta(x + A)/(1-x^3))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/6)} A067661(n-(2*j-1)*3) - Sum_{j=1..floor(n/6)} A067659(n-6*j).
G.f.: (1/2)*(x^3/(1+x^3))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^3/(1-x^3))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020

A238211 The total number of 4's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 5, 5, 6, 7, 9, 11, 13, 15, 18, 21, 25, 29, 34, 40, 46, 54, 62, 71, 82, 95, 108, 124, 142, 162, 184, 210, 238, 271, 306, 346, 392, 443, 498, 561, 632, 710, 796, 893, 1000, 1120, 1252, 1397, 1560, 1740, 1937, 2156
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 3 because the partitions in question are: 7+4+1, 6+4+2, 5+4+3.
		

Crossrefs

Column k=4 of A238450.

Programs

  • Mathematica
    nmax = 100; With[{k=4}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/8)} A067661(n-(2*j-1)*4) - Sum_{j=1..floor(n/8)} A067659(n-8*j).
G.f.: (1/2)*(x^4/(1+x^4))*(Product{n>=1} 1 + x^n) + (1/2)*(x^4/(1-x^4))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020

A238212 The total number of 5's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1, 2, 2, 3, 5, 4, 5, 7, 8, 10, 11, 13, 16, 19, 23, 26, 31, 36, 42, 49, 56, 65, 75, 86, 100, 114, 130, 149, 170, 193, 220, 250, 283, 321, 363, 410, 463, 522, 587, 660, 742, 832, 933, 1045, 1168, 1307, 1459, 1627, 1814, 2020
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 2 because the partitions in question are: 6+5+1, 5+4+3.
		

Crossrefs

Column k=5 of A238450.

Programs

  • Mathematica
    tn5[n_]:=Module[{op=IntegerPartitions[n],m},m=Flatten[Select[op,OddQ[ Length[#]] && Length[#]==Length[Union[#]]&]];Count[m,5]]; Array[tn5,60,0] (* Harvey P. Dale, Feb 06 2015 *)
    nmax = 100; With[{k=5}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/10)} A067661(n-(2*j-1)*5) - Sum_{j=1..floor(n/10)} A067659(n-10*j).
G.f.: (1/2)*(x^5/(1+x^5))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^5/(1-x^5))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020

A238213 The total number of 6's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 17, 20, 23, 27, 33, 38, 44, 51, 59, 68, 79, 91, 104, 119, 136, 155, 178, 202, 230, 261, 296, 335, 379, 428, 483, 544, 612, 688, 773, 867, 972, 1088, 1217, 1360, 1518, 1693, 1887
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 2 because the partitions in question are: 6+5+1, 6+4+2.
		

Crossrefs

Column k=6 of A238450.

Programs

  • Mathematica
    nmax = 100; With[{k=6}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/12)} A067661(n-(2*j-1)*6) - Sum_{j=1..floor(n/12)} A067659(n-12*j).
G.f.: (1/2)*(x^6/(1+x^6))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^6/(1-x^6))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020

A238215 The total number of 1's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 18, 21, 24, 28, 33, 38, 44, 51, 59, 68, 79, 90, 104, 119, 136, 156, 178, 202, 230, 261, 296, 335, 379, 427, 482, 543, 610, 686, 770, 863, 967, 1082, 1209, 1351, 1508, 1681, 1873, 2085, 2318, 2577
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 3 because the partitions in question are: 11+1, 6+3+2+1, 5+4+2+1.
		

Crossrefs

Column k=1 of A238451.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
         `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+1, 1-t)))
        end:
    a:= n-> b(n-1, 2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 01 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i + 1, t] + b[n - i, i + 1, 1 - t]]];
    a[n_] := b[n - 1, 2, 0];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
  • PARI
    seq(n)={my(A=O(x^n)); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x)) - eta(x + A)/(1-x))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/2)} A067659(n-(2*j-1)) - Sum_{j=1..floor(n/2)} A067661(n-2*j).
G.f.: (1/2)*(x/(1+x))*(Product_{n>=1} 1 + x^n) - (1/2)*(x/(1-x))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Nov 07 2024

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020

A238217 The total number of 2's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 11, 14, 16, 19, 22, 26, 30, 35, 41, 47, 55, 63, 73, 84, 97, 110, 127, 145, 166, 188, 215, 243, 277, 313, 354, 400, 452, 508, 573, 644, 723, 811, 910, 1018, 1139, 1273, 1421, 1586, 1768, 1968, 2190, 2436
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 3 because the partitions in question are: 10+2, 6+3+2+1, 5+4+2+1.
		

Crossrefs

Column k=2 of A238451.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Length[#] == Length[ Union[#]]&&MemberQ[#,2]&]],{n,0,50}] (* Harvey P. Dale, Dec 09 2014 *)
    nmax = 100; With[{k=2}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] - x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    seq(n)={my(A=O(x^(n-1))); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x^2)) - eta(x + A)/(1-x^2))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/4)} A067659(n-(2*j-1)*2) - Sum_{j=1..floor(n/4)} A067661(n-4*j).
G.f.: (1/2)*(x^2/(1+x^2))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^2/(1-x^2))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020
Previous Showing 31-40 of 52 results. Next