cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A255873 The first nonzero digit of n/7.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Kit Scriven, Mar 08 2015

Keywords

Examples

			The leading (most significant) digit of 22/7 in A068028 is 3, so a(22)=3.
		

Crossrefs

Cf. A020806 (1/7), A068028 (22/7), A216606 (360/7).

Programs

  • Maple
    A255873 := proc(n)
        local nshf ;
        nshf := n/7 ;
        while nshf < 1 do
            nshf := 10*nshf;
        end do;
        while nshf >= 10 do
            nshf := nshf/10;
        end do;
        floor(nshf) ;
    end proc: # R. J. Mathar, May 28 2016
  • Mathematica
    f[n_] := RealDigits[n/7, 10, 9][[1, 1]]; Array[f, 105] (* Robert G. Wilson v, Mar 08 2015 *)
  • PARI
    a(n) = {my(x = n/7.0); if (x < 1, x *= 10); while (x >= 10, x /= 10); floor(x);} \\ Michel Marcus, Mar 12 2015

A374322 Decimal expansion of sqrt(2)*9801/4412.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 7, 3, 0, 0, 1, 3, 3, 0, 5, 6, 6, 0, 3, 1, 3, 9, 9, 6, 1, 8, 9, 0, 2, 5, 2, 1, 5, 5, 1, 8, 5, 9, 9, 5, 8, 1, 6, 0, 7, 1, 1, 0, 0, 3, 3, 5, 5, 9, 6, 5, 6, 5, 3, 6, 2, 9, 0, 1, 2, 8, 5, 5, 1, 4, 5, 5, 4, 4, 1, 3, 2, 1, 6, 4, 2, 7, 4, 0, 8, 5, 4, 0, 8
Offset: 1

Views

Author

Paolo Xausa, Jul 04 2024

Keywords

Comments

Approximates Pi, correct to 7 digits.

Examples

			3.1415927300133056603139961890252155185995816071100335596565...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Sqrt[2]*9801/4412, 10, 100]]
  • Python
    from math import isqrt
    def A374322(n): return isqrt(10**(n-1<<1)*96059601//9732872)%10 # Chai Wah Wu, Jul 04 2024

A380109 Decimal expansion of 223/71.

Original entry on oeis.org

3, 1, 4, 0, 8, 4, 5, 0, 7, 0, 4, 2, 2, 5, 3, 5, 2, 1, 1, 2, 6, 7, 6, 0, 5, 6, 3, 3, 8, 0, 2, 8, 1, 6, 9, 0, 1, 4, 0, 8, 4, 5, 0, 7, 0, 4, 2, 2, 5, 3, 5, 2, 1, 1, 2, 6, 7, 6, 0, 5, 6, 3, 3, 8, 0, 2, 8, 1, 6, 9, 0, 1, 4, 0, 8, 4, 5, 0, 7, 0, 4, 2, 2, 5, 3, 5, 2, 1, 1, 2, 6, 7, 6, 0, 5, 6, 3, 3, 8, 0
Offset: 1

Views

Author

Stefano Spezia, Jan 12 2025

Keywords

Comments

This constant is a lesser limit to the value of Pi calculated by Archimedes considering 96-gons.
Apart from the first digit the same as A021075. - R. J. Mathar, Jan 17 2025

Examples

			3.1408450704225352112676056338028169014084507042...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi and §13.3 Solving Triangles, pp. 90, 479.

Crossrefs

Cf. A000796, A021075, A068028 (greater limit).

Programs

  • Mathematica
    RealDigits[3+10/71,10,100][[1]]

Formula

Equals 3 + 10/71.

A021319 Decimal expansion of 1/315.

Original entry on oeis.org

0, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3, 1, 7, 4, 6, 0, 3
Offset: 0

Views

Author

Keywords

Comments

If the initial 0 is ignored, a(n) is periodic with period 6: [0, 3, 1, 7, 4, 6]. - Wesley Ivan Hurt, Oct 10 2014

Examples

			1/315 = 0.0031746031746031746031746031...
		

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(1/315); # Wesley Ivan Hurt, Oct 10 2014
  • Mathematica
    RealDigits[1/315, 10, 100, -1][[1]] (* Wesley Ivan Hurt, Oct 10 2014 *)
    Join[{0},LinearRecurrence[{1, 0, -1, 1},{0, 3, 1, 7},98]] (* Ray Chandler, Aug 26 2015 *)

Formula

a(n) = a(n-1)-a(n-3)+a(n-4) for n>0, with a(0)=0; a(n) = A068028(n+1)-1 for n>0; a(n+1) = A020806(n)-1. - Wesley Ivan Hurt, Oct 10 2014

A339264 Decimal expansion of (63/25) * (17+15*sqrt(5)) / (7+15*sqrt(5)): an approximation for Pi from Srinivasa Ramanujan.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 8, 0, 5, 6, 8, 8, 2, 0, 1, 8, 9, 8, 3, 9, 0, 0, 0, 6, 3, 0, 1, 5, 0, 7, 8, 2, 2, 4, 8, 7, 5, 0, 3, 4, 7, 5, 7, 7, 4, 3, 0, 9, 2, 2, 2, 8, 3, 8, 6, 6, 0, 9, 2, 8, 2, 2, 0, 4, 2, 4, 6, 3, 7, 4, 4, 5, 2, 5, 1, 1, 6, 3, 5, 4, 8, 9, 2, 9, 9, 6
Offset: 1

Views

Author

Bernard Schott, Nov 29 2020

Keywords

Comments

This formula that derives from Ramanujan modular equations is correct to 9 places exactly (see Ramanujan link, page 43).
Pi = 3.1415926535... and this approximation = 3.1415926538...
A quadratic number with minimal polynomial 168125x^2 - 792225x + 829521 and denominator 6725. - Charles R Greathouse IV, Oct 02 2022

Examples

			3.141592653805688201898390006301507822487503475774...
		

References

  • Jörg Arndt and Christoph Haenel, Pi Unleashed, Springer-Verlag, 2006, retrieved Jun 05 2013, (4.17) page 57.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 3.14159 (Pi), page 36.

Crossrefs

Other approximations to Pi: A068028, A068079, A068089, A328927.

Programs

  • Maple
    evalf((63/25)*(17+15*sqrt(5))/(7+15*sqrt(5)),100);
  • Mathematica
    RealDigits[(63/25)*(17 + 15*Sqrt[5])/(7 + 15*Sqrt[5]), 10, 100][[1]] (* Amiram Eldar, Nov 29 2020 *)
  • PARI
    (63/13450) * (503+75*sqrt(5)) \\ Michel Marcus, Nov 29 2020

Formula

Equals (63/13450) * (503+75*sqrt(5)).
Equals the root of 829521 - 792225*x + 168125*x^2 which is > 3. - Peter Luschny, Nov 29 2020

A342977 Decimal expansion of (Pi - 2) / 4.

Original entry on oeis.org

2, 8, 5, 3, 9, 8, 1, 6, 3, 3, 9, 7, 4, 4, 8, 3, 0, 9, 6, 1, 5, 6, 6, 0, 8, 4, 5, 8, 1, 9, 8, 7, 5, 7, 2, 1, 0, 4, 9, 2, 9, 2, 3, 4, 9, 8, 4, 3, 7, 7, 6, 4, 5, 5, 2, 4, 3, 7, 3, 6, 1, 4, 8, 0, 7, 6, 9, 5, 4, 1, 0, 1, 5, 7, 1, 5, 5, 2, 2, 4, 9, 6, 5, 7, 0, 0, 8, 7, 0, 6, 3, 3, 5, 5, 2, 9, 2
Offset: 0

Views

Author

Michal Paulovic, Apr 01 2021

Keywords

Comments

The constant represents the area of a circular segment bounded by an arc of Pi/2 radians (the right angle) of a unit circle and by a chord of the length of sqrt(2). Four such segments result when a square with the side length of sqrt(2) is circumscribed by a unit circle. The area of each segment is:
A = (R^2 / 2) * (theta - sin(theta))
A = (1^2 / 2) * (Pi/2 - sin(Pi/2))
A = (1 / 2) * (Pi/2 - 1)
A = (Pi - 2) / 4 = 0.28539816...
where Pi = 3.14159265... (A000796) is the area bounded by the unit circle, and 2 is the area of the inscribed square.
Apart from the first digit this is the same as Pi/4 = 0.78539816... (A003881), the area of a circular sector bounded by the arc of Pi/2 = 1.57079632... (A019669) radians of the unit circle and by two radii of unit length, and 1/2 = 0.5 (A020761) is one-quarter of the area of the inscribed square.
The constant is close to 2/7 = 0.28571428... (2 * A020806) and Pi/11 = 0.28559933... (A019678). The equation (x - 2)/4 = x/11 has a solution x = 22/7 = 3.14285714... (A068028), which is an approximation of Pi.
The best rational approximation of the constant using small positive integers (less than 1000) is 129/452 = 0.28539823..., the next best approximation is 4771/16717 = 0.28539809...
The reciprocal of the constant is:
1/A = 4 / (Pi - 2) = 3.50387678... (A309091).
The sagitta (height) of the circular segment is:
h = R * (1 - cos(theta/2))
h = 1 * (1 - cos(Pi/4))
h = 1 - sqrt(2) / 2
h = 1 - 1 / sqrt(2) = 0.29289321... (A268682).

Examples

			0.2853981633974483...
		

Crossrefs

Cf. A000796, A019669, A019678, A020761, A020806, A068028, A268682, A309091. Essentially the same as A003881.

Programs

  • Mathematica
    RealDigits[Pi/4 - 1/2, 10, 100][[1]] (* Amiram Eldar, Jun 08 2021 *)
  • PARI
    (Pi - 2) / 4

Formula

Equals Integral_{x=-sqrt(2)/2..sqrt(2)/2} Integral_{y=sqrt(2)/2..sqrt(1-x^2)} dy dx.
Equals Sum_{k>=1} (-1)^(k + 1)/(4*k^2 - 1). - Amiram Eldar, Jun 08 2021
Continued fraction: 1/(3 + 3/(4 + 15/(4 + 35/(4 + ... + (4*n^2 - 1)/(4 + ...). - Peter Bala, Feb 22 2024

A380152 Decimal expansion of 864/275.

Original entry on oeis.org

3, 1, 4, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1
Offset: 1

Views

Author

Stefano Spezia, Jan 13 2025

Keywords

Comments

This approximation of Pi was calculated by Fibonacci studying the 96-gon and published in 1220 in Practica geometriae (see Gullberg).

Examples

			3.1418181818181818181818181818181818181818181818...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi, p. 91.

Crossrefs

Programs

  • Mathematica
    RealDigits[864/275,10,100][[1]]
Previous Showing 11-17 of 17 results.