cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A263769 Smallest prime q such that q == -1 (mod prime(n)-1).

Original entry on oeis.org

2, 3, 3, 5, 19, 11, 31, 17, 43, 83, 29, 71, 79, 41, 137, 103, 173, 59, 131, 139, 71, 233, 163, 263, 191, 199, 101, 211, 107, 223, 251, 389, 271, 137, 443, 149, 311, 647, 331, 859, 1423, 179, 379, 191, 587, 197, 419, 443
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

a(n): A000040(1), A065091(1), A002145(1), A007528(1), A030433(1), A068231(1), A127576(1), A061242(1), A141857(1), A141976(1), A132236(1), A142111(1), A142198(1), A141898(1), A141926(1), A142531(1), A142004(1), A142799(1), A142068(1), A142099(1), ...
Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Examples

			a(4) = 5 because 5 == -1 (mod prime(4)-1) and is prime.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do
      k:= ithprime(n)-1;
      q:= 2;
      while (1 + q) mod k <> 0 do
        q:= nextprime(q)
      od;
      A[n]:= q;
    od:
    seq(A[i],i=1..1000); # Robert Israel, Oct 26 2015
  • Mathematica
    Table[q = 2; z = Prime@ n - 1; While[Mod[q, z] != z - 1, q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)

Extensions

Corrected and edited by Robert Israel, Oct 26 2015,

A359387 Primes p such that the smallest prime factor of (2^(p-1)-1)/(3*p) is greater than p.

Original entry on oeis.org

11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 443, 467, 479, 503, 563, 587, 647, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1847, 1907, 2027, 2039, 2063, 2099, 2207, 2243, 2447, 2459, 2579, 2687, 2699
Offset: 1

Views

Author

Alain Rocchelli, Dec 29 2022

Keywords

Comments

This sequence corresponds to the values of p (>7) in A358527 for which p appears in second position in the factorization of 2^(p-1)-1.
All terms are congruent to 11 mod 12, cf. A068231.
It is conjectured that there are infinitely many terms in this sequence, and their estimated asymptotic density n/a(n) ~ C/(log(a(n)))^2 where C is a constant between 0.7 and 0.9.

Examples

			7 is not a term since for p=7, (2^(p-1)-1)/(3*p) = (2^6-1)/(3*7) = 3 and 3 is not greater than 7.
11 is a term since for p=11, (2^(p-1)-1)/(3*p) = (2^10-1)/(3*11) = 31, which is greater than 11.
23 is a term since (2^22-1)/(3*23) = 60787 = 89*683 and 89 is greater than 23.
		

Crossrefs

Programs

  • Mathematica
    q[p_] := AllTrue[Range[p], ! PrimeQ[#] || PowerMod[2, p - 1, 3*p*#] > 1 &]; Select[Prime[Range[4, 400]], q] (* Amiram Eldar, Dec 31 2022 *)
  • PARI
    isok(p) = (p%12==11 && isprime(p)) || return(0); forprime(div=5, p-1, if(Mod(2,div)^(p-1)==1, return(0))); 1;

A119657 Denominator of BernoulliB[10p] divided by 66, where p=Prime[n].

Original entry on oeis.org

5, 217, 1, 71, 23, 131, 1, 191, 47, 59, 311, 1, 83, 431, 1, 107, 1, 1, 1, 1, 1, 1, 167, 179, 971, 1, 1031, 1, 1091, 227, 1, 263, 1, 1, 1, 1511, 1571, 1, 1, 347, 359, 1811, 383, 1931, 1, 1, 2111
Offset: 1

Views

Author

Alexander Adamchuk, Jul 28 2006

Keywords

Comments

The only composite in this sequence is a(2) = 217 = 7*31. All other a(n) are equal to 1 (for n=3,7,12,15,17,18,19,20,21,22,26,28,31,33,34,35,38,39,45,46..) or prime: a(1) = 5, all other primes in a(n) belong to A068231[n]: Primes congruent to 11 (mod 12). It appears that every prime from A068231[n] except 11 shows up in a(n) just once.

Crossrefs

Programs

  • Mathematica
    Table[Denominator[BernoulliB[10Prime[n]]]/66,{n,1,47}]

Formula

a(n) = Denominator[BernoulliB[10Prime[n]]]/66.

A180217 a(n) = (n-th prime modulo 3) + (n-th prime modulo 4).

Original entry on oeis.org

4, 3, 3, 4, 5, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 5, 2, 4, 5, 2, 4, 5, 3, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 3, 4, 2, 4, 5, 3, 5, 2, 5, 2, 3, 4, 4, 4, 5, 2, 3, 5, 2, 5, 3, 5, 3, 4, 2, 3, 4, 3, 4, 5, 2, 3, 4, 2, 5, 2, 3, 5, 4, 2, 4, 5, 3, 2, 3, 2, 5, 2, 5, 2, 4, 5, 3, 2, 3, 4, 5, 5, 4, 5, 4, 5, 3, 3, 4, 2, 4, 3
Offset: 1

Views

Author

Zak Seidov, Jan 16 2011

Keywords

Comments

a(n) = 2 iff prime(n) == 1 (mod 12); a(n) = 2 for prime(n) = 13, 37, 61, 73, 97, 109, ... (A068228).
a(n) = 5 iff prime(n) == 11 (mod 12); a(n) = 5 for prime(n) = 11, 23, 47, 59, 71, 83, ... (A068231).
For n > 2, a(n) = 3 iff prime(n) == 5 (mod 12); a(n) = 3 for prime(n) = 5, 17, 29, 41, 53, 89, ... (A040117).
For n > 2, a(n) = 4 iff prime(n) == 7 (mod 12); a(n) = 4 for prime(n) = 7, 19, 31, 43, 67, 79, ... (A068229).

Crossrefs

Programs

  • Magma
    A180217:=func< n | p mod 3 + p mod 4 where p is NthPrime(n) >; [ A180217(n): n in [1..105] ]; // Klaus Brockhaus, Jan 18 2011
  • Mathematica
    Mod[#,3]+Mod[#,4]&/@Prime[Range[110]] (* Harvey P. Dale, Nov 09 2011 *)

A232040 Primes p congruent to 11 mod 12 such that (p - 1)/2 does not divide the numerator of the Bernoulli number B(p-1).

Original entry on oeis.org

1871, 2531, 3191, 3851, 5171, 6491, 7151, 9791, 13751, 14411, 15731, 18371, 19031, 20747, 21011, 24851, 24971, 26951, 27611, 30911, 34031, 34211, 34871, 35531, 36191, 37511, 37643, 40151, 41999, 42131, 43451, 44111, 44771, 46091, 46751, 48731, 49391
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 17 2013

Keywords

Comments

A prime p is in the sequence if p is of the form 660*n + 551.

Crossrefs

Programs

  • PARI
    forstep(p=11, 49391, 12, if(isprime(p)&&!Mod(numerator(bernfrac(p-1)), (p-1)/2)==0, print1(p, ", ")));

A294614 Sum of the divisors of 12*n - 1, divided by 12, minus n.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 2, 3, 0, 0, 0, 3, 4, 0, 0, 0, 0, 8, 4, 3, 0, 3, 6, 0, 0, 5, 0, 7, 4, 0, 0, 0, 18, 0, 0, 0, 0, 9, 4, 12, 4, 0, 14, 0, 0, 5, 8, 11, 0, 0, 6, 0, 12, 9, 0, 5, 0, 13, 6, 5, 10, 7, 14, 0, 0, 5, 0, 31, 0, 5, 0, 7, 30, 0, 12, 0, 0, 17, 6, 0, 0, 13, 18, 9, 8
Offset: 1

Views

Author

Omar E. Pol and Robert G. Wilson v, Nov 04 2017

Keywords

Comments

a(n) = 0 iff n is in A138620.
First occurrence of k > -1: 1, 3, 8, 13, 18, 31, 28, 33, 23, 43, 66, 53, 45, 63, 48, 101, 166, etc.

Examples

			a(13) = 3 since d(12*13-1)/12 - 13 = 192/12 - 13 = 16 - 13 = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 12 n - 1]/12 - n; Array[a, 90]
  • PARI
    a(n) = sigma(12*n-1)/12 - n;

Formula

a(n) = sigma(12*n-1)/12 - n = A000203(A017653(n-1))/12 - n.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 - 1/2 = 0.048311... . - Amiram Eldar, Mar 28 2024

A319535 Primes of the form 2*6^k - 1.

Original entry on oeis.org

11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791
Offset: 1

Views

Author

Jianing Song, Sep 22 2018

Keywords

Comments

Primes in A164559.
Companion sequence of A057472. There are 49 terms known in this sequence.

Examples

			2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), this sequence (b=6), A158795 (b=7), A055558 (b=10), A120377 (b=11).

Programs

  • Magma
    [k: n in [1..100] | IsPrime(k) where k is 2*6^n-1];  // K. D. Bajpai, Nov 15 2019
  • Maple
    A319535:= n-> (2*6^n-1): select(isprime, [seq((A319535(n), n=1..200))]);  # K. D. Bajpai, Nov 15 2019
  • Mathematica
    Select[Table[2*6^k-1,{k,1600}], PrimeQ[#]&]  (* K. D. Bajpai, Nov 15 2019 *)
  • PARI
    for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", ")))
    

Formula

a(n) = 2*6^A057472(n) - 1.

A132244 Twin primes congruent to {11, 13, 17, 19} mod 30.

Original entry on oeis.org

11, 13, 17, 19, 41, 43, 71, 73, 101, 103, 107, 109, 137, 139, 191, 193, 197, 199, 227, 229, 281, 283, 311, 313, 347, 349, 431, 433, 461, 463, 521, 523, 617, 619, 641, 643, 821, 823, 827, 829, 857, 859, 881, 883, 1031, 1033, 1061, 1063
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Partition[Prime[Range[200]],2,1],#[[2]]-#[[1]]==2&&MemberQ[ {11,13,17,19},Mod[ #[[1]],30]]&&MemberQ[{11,13,17,19},Mod[#[[2]],30]]&]//Flatten (* Harvey P. Dale, Jul 04 2022 *)

A132245 Twin primes congruent to {1, 11, 13, 29} mod 30.

Original entry on oeis.org

11, 13, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 149, 151, 179, 181, 191, 193, 239, 241, 269, 271, 281, 283, 311, 313, 419, 421, 431, 433, 461, 463, 521, 523, 569, 571, 599, 601, 641, 643, 659, 661, 809, 811, 821, 823, 881, 883, 1019, 1021
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2007

Keywords

Crossrefs

A155187 Prime numbers q of primitive Pythagorean triangles such that perimeters are averages of twin prime pairs, p+1=q(prime), a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

2, 3, 11, 71, 227, 491, 683, 1103, 1187, 2591, 3923, 4271, 4931, 6737, 7193, 7703, 8093, 8753, 8963, 9173, 9377, 10271, 13043, 13451, 13997, 15233, 15443, 15803, 15887, 17957, 18701, 19961, 20681, 21701, 22031, 22073, 24371, 24473, 24683
Offset: 1

Views

Author

Keywords

Comments

p=1, q=2(prime), a=3, b=4, c=5, s=12-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[q],AppendTo[lst,q]]],{n,8!}];lst
Previous Showing 31-40 of 40 results.