cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A171258 Numbers n such that sigma(n) = 13*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

630, 5544, 11160, 18810, 27000, 57000, 80388, 161820, 178020, 182880, 242820, 265608, 388620, 391500, 447678, 465192, 522522, 671760, 690120, 711000, 775170, 826500, 901170, 1051830, 1102290, 1157130, 1418160, 1578330, 1679400, 1812384, 1874520, 1993824
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2*10^6],DivisorSigma[1,#]==13EulerPhi[#]&] (* Harvey P. Dale, Mar 29 2018 *)
  • PARI
    for(k=1,2e6, sigma(k) - 13*eulerphi(k) || print1(k", "));

A171259 Numbers n such that sigma(n) = 14*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

420, 2730, 5940, 12540, 24024, 38610, 48360, 66528, 77490, 81510, 133920, 140448, 141372, 156420, 163590, 282720, 284580, 298452, 348348, 498420, 600780, 681912, 701220, 771420, 792480, 901530, 918918, 1016730, 1052220, 1150968, 1372680, 1439592, 1654620
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 14 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,2e6, sigma(k) - 14*eulerphi(k) || print1(k", "));

A171260 Numbers n such that sigma(n) = 15*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

840, 11880, 12180, 25080, 32130, 67830, 79170, 172260, 282744, 312840, 363660, 569160, 596904, 634410, 696696, 843780, 846090, 959310, 996840, 1119690, 1201560, 1402440, 1542840, 1607340, 1929312, 2104440, 2247210, 2363790, 3309240, 3368040, 3883680
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 15 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,3e6, sigma(k) - 15*eulerphi(k) || print1(k", "));

A292422 Numbers of the form x = 2^k*p*q, p,q odd primes, such that sigma(x)/phi(x) = 4.

Original entry on oeis.org

418, 3596, 3956, 5396, 8636, 41656, 56536, 393104, 2072608, 2316448, 6543008, 17434528, 135394432, 217023616, 1264918784, 1490909824, 2710540544, 11444858368, 17669583104, 34797058304, 37698861568, 70572901376, 132968907776, 226965472256, 233356030976, 552070776832, 596357220352, 601188468736
Offset: 1

Views

Author

Jud McCranie, Sep 16 2017

Keywords

Comments

A subset of A068390 and A020492 (balanced numbers). Conjectured to be infinite by Broughan and Zhou.
From David A. Corneth, Sep 21 2019: (Start)
Exactly 130 terms are of the form 2^35 * p * q.
We have phi and sigma are multiplicative and sigma(2^k) / phi(2^k) = 4 - 2/2^k, and sigma(p)/phi(p) = 1 + 2 / (p-1).
So we need (4 - 2/2^k) * (1 + 2 / (p-1)) <= 4 which gives a lower bound on p depending on k; p > nextprime(4*2^k).
We can then, given k and p, solve for q. Without loss of generality, p < q. Then search over the primes and stop for that value of k when p > q.
This method may be refined using insights from the article and/or given some k, solve the system (1 + 2 / (p-1)) * (1 + 2 / (q - 1)) = (a*m) / (b*m) for p and q where a/b is in lowest terms, m > 0. (End)
Furthermore, p < 8*2^k - 2. - David A. Corneth, Sep 26 2019

Examples

			418 = 2*11*19; sigma(418) = 720 = 4*phi(418).
		

Crossrefs

Subsequence of A293391 (sigma(x)/phi(x) square).

Programs

  • PARI
    is(n) = my(f = factor(n)); #f~ == 3 && f[2, 2] == 1 && f[3, 2] == 1 && f[1,1] == 2 && sigma(f) / eulerphi(f) == 4 \\ David A. Corneth, Sep 21 2019

A164647 Numbers n such that sigma(n)/phi(n) = 16/9.

Original entry on oeis.org

1463, 2945, 8255, 70091, 81809, 89999, 122759, 187625, 193039, 196469, 388585, 494665, 671365, 2311673, 2442583, 2687113, 4209985, 4705285, 4902247, 5393017, 5667389, 5866003, 9248323, 10795967, 11345411, 11670275, 11773027, 13290485, 13741273, 15978487
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390, A163667, A164646.

Programs

  • PARI
    for( n=1,10^7, sigma(n)==16/9*eulerphi(n) && print1(n","))

Extensions

More terms from Farideh Firoozbakht, Sep 22 2009

A079546 a(n) = sigma(n) - 4*phi(n).

Original entry on oeis.org

-3, -1, -4, -1, -10, 4, -16, -1, -11, 2, -28, 12, -34, 0, -8, -1, -46, 15, -52, 10, -16, -4, -64, 28, -49, -6, -32, 8, -82, 40, -88, -1, -32, -10, -48, 43, -106, -12, -40, 26, -118, 48, -124, 4, -18, -16, -136, 60, -111, 13, -56, 2, -154, 48, -88, 24, -64, -22, -172, 104, -178, -24, -40, -1, -108, 64, -196, -2, -80, 48, -208, 99, -214
Offset: 1

Views

Author

N. J. A. Sloane, Jan 23 2003

Keywords

Comments

If k is even and a(k) = 0 then sigma(2*k) >= 4*k, i.e., 2*k is nondeficient (A023196) (Makowski, 1987). - Amiram Eldar, Dec 05 2023

References

  • Andrzej Makowski, Remarks on some problems in the elementary theory of numbers, Acta Math. Univ. Comenian 50/51 (1987), 277-281.
  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer, 2005, Chapter III, p. 88.

Crossrefs

Programs

  • Magma
    [DivisorSigma(1, n) - 4*EulerPhi(n): n in [1..80]]; // G. C. Greubel, Jun 19 2019
    
  • Mathematica
    Table[DivisorSigma[1,n]-4*EulerPhi[n],{n,80}] (* Harvey P. Dale, Dec 08 2014 *)
  • PARI
    vector(80, n, sigma(n) - 4*eulerphi(n)) \\ G. C. Greubel, Jun 19 2019
    
  • Sage
    [sigma(n,1) - 4*euler_phi(n) for n in (1..80)] # G. C. Greubel, Jun 19 2019

Formula

Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/12 - 12/Pi^2 = -0.393387... . - Amiram Eldar, Dec 05 2023

A164649 Numbers n such that sigma(n)/phi(n) = 36/25.

Original entry on oeis.org

5797, 10153, 20377, 50953, 383719, 405449, 446039, 486421, 608399, 973709, 1321529, 1521311, 3086369, 3228511, 3451877, 3529813, 3859513, 4552373, 4767721, 5827679, 6194321, 6479599, 6724039, 6927893, 7038241, 7919197, 11696111, 15893773, 16894141, 16924873
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257. See A164646-A164650 for related sequences.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164646-A164650.

Programs

  • PARI
    for( n=1,1e7, sigma(n)==36/25*eulerphi(n) && print1(n","))

Extensions

More terms from Sean A. Irvine, May 17 2010

A164650 Numbers n such that sigma(n)/phi(n) = 49/36.

Original entry on oeis.org

679, 10127, 20273, 672203, 971261, 1133639, 1247129, 1336231, 1646743, 1701089, 2369471, 2674969, 2722499, 2989909, 3160079, 3597659, 4545749, 6333503, 7127861, 9357101, 10574629, 20070061, 52928293, 67931137, 74731807, 79940069, 80704813, 93444911, 128155333
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.
If 7^{k+1}-1 = d*D such that p = 2*7^{k+1}*(d+1)-1 and q = 2*(7^{k+1}+D)-1 are distinct primes, then n = 7^k*p*q is a term of this sequence.
The same theorem holds for sequences of numbers such that sigma/phi=b^2/(b-1)^2 with other primes b (here b=7), cf. A068390, A164646, A164648.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164646-A164649.

Programs

  • PARI
    for( n=1,1e7, sigma(n)==49/36*eulerphi(n) && print1(n","))

A165629 Numbers n such that sigma(n)/phi(n) = 25/4, where sigma = A000203, phi = A000010.

Original entry on oeis.org

760, 11020, 18088, 21112, 58206, 65262, 71630, 100280, 123424, 142688, 262276, 303212, 332710, 630344, 679070, 761390, 1265096, 1369120, 1454060, 1454260, 1462552, 1704794, 2185750, 2386664, 2627548, 2783872, 2786056, 2909380, 2927848, 5207680, 5289220
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A011257. Contains the product m*n of relatively prime (gcd(m,n)=1) terms (m,n) in A068390 x A164648 and in A164646 x A165630.

Programs

  • Mathematica
    Select[Range[5300000],4*DivisorSigma[1,#]==25*EulerPhi[#]&] (* Harvey P. Dale, May 09 2012 *)
  • PARI
    for( i=1,1e9, sigma(i)*4-25*eulerphi(i) || print1(i", "))
Previous Showing 11-19 of 19 results.