cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A364977 Numbers k such that k/(3*k - sigma(k)) is a positive integer.

Original entry on oeis.org

6, 24, 28, 60, 84, 168, 252, 270, 336, 496, 630, 756, 792, 864, 924, 936, 1140, 1170, 1488, 1638, 2268, 2808, 2970, 3672, 4464, 5148, 5472, 6804, 7308, 7644, 8128, 8700, 8910, 9300, 9936, 11172, 13392, 16368, 18018, 20196, 20412, 22230, 24384, 25116, 27888, 31968
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

Analogous to A271816 as 3-abundant numbers (A068403) are analogous to abundant numbers (A005101).
Numbers k such that the sum of the divisors of k with one of them added twice is equal to 3*k.
The perfect numbers (A000396) are all terms.
For all the terms k, 2 <= sigma(k)/k < 3, i.e., they are all nondeficient numbers (A023196), and none are 3-abundant (A068403).

Examples

			6 is a term since 3*6 - sigma(6) = 6 > 0 and 6 is divisible by 6.
24 is a term since 3*24 - sigma(24) = 12 > 0 and 24 is divisible by 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[32000], (d = 3*# - DivisorSigma[1, #]) > 0 && Divisible[#, d] &]
  • PARI
    is(n) = {my(d = 3*n - sigma(n)); d > 0 && n%d == 0;}

A291457 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 3.

Original entry on oeis.org

180, 240, 360, 420, 480, 540, 600, 660, 780, 840, 1080, 1320, 1560, 1890, 1920, 2016, 2040, 2184, 2280, 2352, 2376, 2688, 2760, 2856, 3000, 3192, 3360, 3480, 3720, 3744, 4284, 4320, 4440, 4680, 4704, 4896, 4920, 5160, 5292, 5640, 5796, 6048, 6360, 6552, 7080, 7128
Offset: 1

Views

Author

Paolo P. Lava, Aug 24 2017

Keywords

Comments

Case k=2 are the admirable numbers (A111592).

Examples

			One of the proper divisors of 1080 is 120 and sigma(1080) - 3*120 = 3600 - 360 = 3240 = 3*1080.
One of the proper divisors of 17850 is 6 and sigma(17850) - 3*6 = 53568 - 18 = 53550 = 3*17850.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,c,k; c:=0; a:=sort([op(divisors(q))]); for k from 1 to nops(a)-1 do if sigma(q)-h*a[k]=h*q then c:=1; break; fi; od; if c=1 then q; fi; end: seq(P(i,3),i=1..7200);
  • Mathematica
    k=3; Select[Range[7128], (t = DivisorSigma[1, #]/k - #; # > t > 0 && IntegerQ[t] && Mod[#, t] == 0) &] (* Giovanni Resta, Aug 25 2017 *)

A380930 Numbers k such that A380845(k) > 3*k.

Original entry on oeis.org

1080, 2160, 3600, 4320, 7200, 7440, 8640, 11340, 13608, 14400, 14880, 15120, 17280, 18600, 22680, 22860, 27216, 28800, 29760, 30240, 30480, 31752, 33264, 34020, 34560, 37200, 41664, 45360, 45720, 45900, 51408, 53340, 54432, 57600, 59520, 60480, 60960, 61200, 63504
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Analogous to 3-abundant numbers (A068403) with A380845 instead of A000203.

Crossrefs

Subsequence of A068403 and A380929.
Subsequences: A380848, A380931.
Similar sequences: A285615, A293187, A300664, A328135, A340109.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 3*k]; Select[Range[64000], q]
  • PARI
    isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 3*k;}

Formula

1080 is a term since A380845(1080) = 3330 > 3 * 1080 = 3240.

A067808 Numbers k such that sigma(k)^2 > 3*sigma(k^2).

Original entry on oeis.org

720, 1080, 1440, 1680, 1800, 2016, 2160, 2520, 2880, 3024, 3240, 3360, 3600, 3780, 3960, 4032, 4200, 4320, 4680, 5040, 5280, 5400, 5544, 5760, 6048, 6120, 6300, 6480, 6720, 6840, 7056, 7200, 7560, 7920, 8064, 8400, 8640, 9000, 9072, 9240, 9360, 9504
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2002

Keywords

Comments

For every m>1 sigma(m)^2 > sigma(m^2).
From Robert Israel, Jun 20 2018: (Start)
Numbers with prime factorization Product_j p_j^(e_j) such that Product_j (p_j^(e_j+1)-1)^2/((p_j^(2*e_j+1)-1)*(p_j-1)) > 3.
If h is a term then so are all multiples of h.
The first term that is squarefree is 7420738134810 = A002110(12). (End)
From Amiram Eldar, Apr 27 2025: (Start)
All the terms are 3-abundant numbers (A068403).
The numbers of terms that do not exceed 10^k, for k = 3, 4, ..., are 1, 44, 501, 5246, 51870, 518782, 5191909, 51889993, 518783441, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00518... . (End)

Crossrefs

Subsequence of A068403.

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      mul((t[1]^(t[2]+1)-1)^2/(t[1]^(2*t[2]+1)-1)/(t[1]-1), t = F) > 3
    end proc:
    select(filter, [$1..10^4]); # Robert Israel, Jun 20 2018
  • Mathematica
    filterQ[n_] := Module[{F = FactorInteger[n]}, If[n == 1, Return[False]]; Product[{p, e} = pe; (p^(e+1)-1)^2/((p^(2e+1)-1)(p-1)), {pe, F}] > 3];
    Select[Range[10^4], filterQ] (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
  • PARI
    isok(k) = sigma(k)^2 > 3*sigma(k^2); \\ Michel Marcus, Apr 29 2019
    
  • PARI
    isok(k) = {my(f = factor(k), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(e+1)-1)^2/((p^(2*e+1)-1)*(p-1))) > 3;} \\ Amiram Eldar, Apr 27 2025

A126104 Numbers n not divisible by 6 such that sigma(n) > 3n.

Original entry on oeis.org

40040, 61600, 72800, 80080, 104720, 117040, 123200, 123760, 138320, 141680, 145600, 154000, 160160, 172480, 200200, 209440, 215600, 234080, 246400, 247520, 254800, 261800, 276640, 280280, 283360, 291200, 292600, 308000
Offset: 1

Views

Author

Ant King, Mar 07 2007

Keywords

Crossrefs

Intersection of A047253 and A068403.

Programs

  • Mathematica
    Select[Range[310000], Mod[#, 6] > 1 && DivisorSigma[1, #] > 3# &] (* Amiram Eldar, Dec 03 2019 *)

A259312 n such that 3 < sigma(n)/n < sigma(m)/m for all abundant numbers m

Original entry on oeis.org

180, 780, 1872, 2352, 16830, 17850, 20496, 51060, 59724, 64890, 430272, 884730, 3767100, 4946508, 15287976, 33806052, 34747416, 40974318, 137168580, 140492772, 157048290, 184773312, 3615557148, 16709332608, 40564903620, 40936559976, 60782804964
Offset: 1

Views

Author

Michel Marcus, Jun 24 2015

Keywords

Comments

This sequence is similar to A071927, but with ratio 3 rather than 2.
a(28) > 7*10^10. - Giovanni Resta, Jun 24 2015

Crossrefs

Cf. A068403 (sigma(n)>3n), A071927 (barely abundant).

Programs

  • PARI
    lista(nn) =  {abk = 4; for (n = 1, nn, ab = sigma(n)/n; if ((ab > 3) && (ab < abk), print1(n, ", "); abk = ab););}

Extensions

a(23)-a(27) from Giovanni Resta, Jun 24 2015

A335030 Numbers m that are not practical and have an abundancy index sigma(m)/m which is larger than that of any smaller number that is not practical.

Original entry on oeis.org

3, 9, 10, 44, 70, 102, 350, 372, 1608, 3492, 6096, 10380, 44040, 100260, 180240, 425160, 1744560, 2425080, 5509980, 10048080, 23614920, 97639920, 396315360, 900229680, 2519017200, 3113704440, 12870562320, 52307529120
Offset: 1

Views

Author

Amiram Eldar, May 20 2020

Keywords

Comments

None of the terms are superabundant (A004394) since all the superabundant numbers are practical numbers (A005153).
The least term m that is k-abundant (having sigma(m)/m > k) for k = 2, 3, ... is A005101(14) = 70, A068403(896) = 44040, A068404(792087) = 3113704440, ...
What is the least 5-abundant number (A215264) that is not practical?

Examples

			The first 5 numbers that are not practical are m = 3, 5, 7, 9, 10. Their abundancy indices sigma(m)/m are 1.333..., 1.2, 1.142..., 1.444..., 1.8. The record values occur at 3, 9 and 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; rm = 1; Do[fct = FactorInteger[n]; r = Times@@((First/@fct^ (1+Last/@ fct)-1)/(First/@fct-1))/n; If[r > rm && !pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^5}]; seq

A335141 Numbers that are both unitary pseudoperfect (A293188) and nonunitary pseudoperfect (A327945).

Original entry on oeis.org

840, 2940, 7260, 9240, 10140, 10920, 13860, 14280, 15960, 16380, 17160, 18480, 19320, 20580, 21420, 21840, 22440, 23100, 23940, 24024, 24360, 25080, 26040, 26520, 27300, 28560, 29640, 30360, 30870, 31080, 31920, 32340, 34440, 34650, 35700, 35880, 36120, 36960
Offset: 1

Views

Author

Amiram Eldar, May 25 2020

Keywords

Comments

All the terms are nonsquarefree (since squarefree numbers do not have nonunitary divisors).
All the terms are either 3-abundant numbers (A068403) or 3-perfect numbers (A005820). None of the 6 known 3-perfect numbers are terms of this sequence. If there is a term that is 3-perfect, it is also a unitary perfect (A002827) and a nonunitary perfect (A064591).

Examples

			840 is a term since its aliquot unitary divisors are {1, 3, 5, 7, 8, 15, 21, 24, 35, 40, 56, 105, 120, 168, 280} and 1 + 5 + 7 + 8 + 15 + 35 + 40 + 56 + 105 + 120 + 168 + 280 = 840, and its nonunitary divisors are {2, 4, 6, 10, 12, 14, 20, 28, 30, 42, 60, 70, 84, 140, 210, 420} and 70 + 140 + 210 + 420 = 840.
		

Crossrefs

Intersection of A293188 and A327945.
Subsequence of A335140.

Programs

  • Mathematica
    pspQ[n_] := Module[{d = Divisors[n], ud, nd, x}, ud = Select[d, CoprimeQ[#, n/#] &]; nd = Complement[d, ud]; ud = Most[ud]; Plus @@ ud >= n && Plus @@ nd >= n && SeriesCoefficient[Series[Product[1 + x^ud[[i]], {i, Length[ud]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^nd[[i]], {i, Length[nd]}], {x, 0, n}], n] > 0]; Select[Range[10^4], pspQ]

A348523 Numbers that are both infinitary and noninfinitary abundant numbers.

Original entry on oeis.org

960, 1440, 1800, 2016, 2400, 2940, 3240, 3528, 3780, 4536, 4860, 6720, 7260, 8640, 10080, 10140, 10560, 12096, 12480, 12600, 13860, 14784, 15120, 15360, 15840, 16320, 16380, 16800, 17472, 17640, 18240, 18480, 18720, 18900, 19008, 19800, 20160, 21420, 21600, 21840
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2021

Keywords

Comments

Apparently, the smallest odd term is 9170790153525.

Examples

			960 is a term since A049417(960) = 2040 > 2*960 = 1920 and A348271(960) = 1008 > 960.
		

Crossrefs

Intersection of A129656 and A348274.
Subsequence of A068403.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := (i = isigma[n]) > 2*n && DivisorSigma[1, n] - i > n; Select[Range[10^4], q]

A364976 3-abundant numbers k such that k/(sigma(k)-3*k) is an integer.

Original entry on oeis.org

180, 240, 360, 420, 540, 600, 780, 1080, 1344, 1872, 1890, 2016, 2184, 2352, 2376, 2688, 3192, 3276, 3744, 4284, 4320, 4680, 5292, 5376, 5796, 6048, 6552, 7128, 7440, 8190, 10416, 13776, 14850, 18600, 19824, 19872, 20496, 21528, 22932, 25056, 26208, 26496, 26784
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

Analogous to A153501 as 3-abundant numbers (A068403) are analogous to abundant numbers (A005101).
Numbers k such that the sum of the divisors of k except for one of them is equal to 3*k.

Examples

			180 is a term since sigma(180) - 3*180 = 6 > 0 and 180 is divisible by 6.
		

Crossrefs

Subsequence of A068403.
A027687 is a subsequence.

Programs

  • Mathematica
    Select[Range[27000], (d = DivisorSigma[1, #] - 3*#) > 0 && Divisible[#, d] &]
  • PARI
    is(n) = {my(d = sigma(n) - 3*n); d > 0 && n%d == 0;}
Previous Showing 11-20 of 26 results. Next