A364977
Numbers k such that k/(3*k - sigma(k)) is a positive integer.
Original entry on oeis.org
6, 24, 28, 60, 84, 168, 252, 270, 336, 496, 630, 756, 792, 864, 924, 936, 1140, 1170, 1488, 1638, 2268, 2808, 2970, 3672, 4464, 5148, 5472, 6804, 7308, 7644, 8128, 8700, 8910, 9300, 9936, 11172, 13392, 16368, 18018, 20196, 20412, 22230, 24384, 25116, 27888, 31968
Offset: 1
6 is a term since 3*6 - sigma(6) = 6 > 0 and 6 is divisible by 6.
24 is a term since 3*24 - sigma(24) = 12 > 0 and 24 is divisible by 12.
-
Select[Range[32000], (d = 3*# - DivisorSigma[1, #]) > 0 && Divisible[#, d] &]
-
is(n) = {my(d = 3*n - sigma(n)); d > 0 && n%d == 0;}
A291457
Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 3.
Original entry on oeis.org
180, 240, 360, 420, 480, 540, 600, 660, 780, 840, 1080, 1320, 1560, 1890, 1920, 2016, 2040, 2184, 2280, 2352, 2376, 2688, 2760, 2856, 3000, 3192, 3360, 3480, 3720, 3744, 4284, 4320, 4440, 4680, 4704, 4896, 4920, 5160, 5292, 5640, 5796, 6048, 6360, 6552, 7080, 7128
Offset: 1
One of the proper divisors of 1080 is 120 and sigma(1080) - 3*120 = 3600 - 360 = 3240 = 3*1080.
One of the proper divisors of 17850 is 6 and sigma(17850) - 3*6 = 53568 - 18 = 53550 = 3*17850.
-
with(numtheory): P:=proc(q,h) local a,b,c,k; c:=0; a:=sort([op(divisors(q))]); for k from 1 to nops(a)-1 do if sigma(q)-h*a[k]=h*q then c:=1; break; fi; od; if c=1 then q; fi; end: seq(P(i,3),i=1..7200);
-
k=3; Select[Range[7128], (t = DivisorSigma[1, #]/k - #; # > t > 0 && IntegerQ[t] && Mod[#, t] == 0) &] (* Giovanni Resta, Aug 25 2017 *)
A380930
Numbers k such that A380845(k) > 3*k.
Original entry on oeis.org
1080, 2160, 3600, 4320, 7200, 7440, 8640, 11340, 13608, 14400, 14880, 15120, 17280, 18600, 22680, 22860, 27216, 28800, 29760, 30240, 30480, 31752, 33264, 34020, 34560, 37200, 41664, 45360, 45720, 45900, 51408, 53340, 54432, 57600, 59520, 60480, 60960, 61200, 63504
Offset: 1
-
q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 3*k]; Select[Range[64000], q]
-
isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 3*k;}
A067808
Numbers k such that sigma(k)^2 > 3*sigma(k^2).
Original entry on oeis.org
720, 1080, 1440, 1680, 1800, 2016, 2160, 2520, 2880, 3024, 3240, 3360, 3600, 3780, 3960, 4032, 4200, 4320, 4680, 5040, 5280, 5400, 5544, 5760, 6048, 6120, 6300, 6480, 6720, 6840, 7056, 7200, 7560, 7920, 8064, 8400, 8640, 9000, 9072, 9240, 9360, 9504
Offset: 1
-
filter:= proc(n) local F;
F:= ifactors(n)[2];
mul((t[1]^(t[2]+1)-1)^2/(t[1]^(2*t[2]+1)-1)/(t[1]-1), t = F) > 3
end proc:
select(filter, [$1..10^4]); # Robert Israel, Jun 20 2018
-
filterQ[n_] := Module[{F = FactorInteger[n]}, If[n == 1, Return[False]]; Product[{p, e} = pe; (p^(e+1)-1)^2/((p^(2e+1)-1)(p-1)), {pe, F}] > 3];
Select[Range[10^4], filterQ] (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
-
isok(k) = sigma(k)^2 > 3*sigma(k^2); \\ Michel Marcus, Apr 29 2019
-
isok(k) = {my(f = factor(k), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(e+1)-1)^2/((p^(2*e+1)-1)*(p-1))) > 3;} \\ Amiram Eldar, Apr 27 2025
A126104
Numbers n not divisible by 6 such that sigma(n) > 3n.
Original entry on oeis.org
40040, 61600, 72800, 80080, 104720, 117040, 123200, 123760, 138320, 141680, 145600, 154000, 160160, 172480, 200200, 209440, 215600, 234080, 246400, 247520, 254800, 261800, 276640, 280280, 283360, 291200, 292600, 308000
Offset: 1
-
Select[Range[310000], Mod[#, 6] > 1 && DivisorSigma[1, #] > 3# &] (* Amiram Eldar, Dec 03 2019 *)
A259312
n such that 3 < sigma(n)/n < sigma(m)/m for all abundant numbers m
Original entry on oeis.org
180, 780, 1872, 2352, 16830, 17850, 20496, 51060, 59724, 64890, 430272, 884730, 3767100, 4946508, 15287976, 33806052, 34747416, 40974318, 137168580, 140492772, 157048290, 184773312, 3615557148, 16709332608, 40564903620, 40936559976, 60782804964
Offset: 1
-
lista(nn) = {abk = 4; for (n = 1, nn, ab = sigma(n)/n; if ((ab > 3) && (ab < abk), print1(n, ", "); abk = ab););}
A335030
Numbers m that are not practical and have an abundancy index sigma(m)/m which is larger than that of any smaller number that is not practical.
Original entry on oeis.org
3, 9, 10, 44, 70, 102, 350, 372, 1608, 3492, 6096, 10380, 44040, 100260, 180240, 425160, 1744560, 2425080, 5509980, 10048080, 23614920, 97639920, 396315360, 900229680, 2519017200, 3113704440, 12870562320, 52307529120
Offset: 1
The first 5 numbers that are not practical are m = 3, 5, 7, 9, 10. Their abundancy indices sigma(m)/m are 1.333..., 1.2, 1.142..., 1.444..., 1.8. The record values occur at 3, 9 and 10.
-
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; rm = 1; Do[fct = FactorInteger[n]; r = Times@@((First/@fct^ (1+Last/@ fct)-1)/(First/@fct-1))/n; If[r > rm && !pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^5}]; seq
A335141
Numbers that are both unitary pseudoperfect (A293188) and nonunitary pseudoperfect (A327945).
Original entry on oeis.org
840, 2940, 7260, 9240, 10140, 10920, 13860, 14280, 15960, 16380, 17160, 18480, 19320, 20580, 21420, 21840, 22440, 23100, 23940, 24024, 24360, 25080, 26040, 26520, 27300, 28560, 29640, 30360, 30870, 31080, 31920, 32340, 34440, 34650, 35700, 35880, 36120, 36960
Offset: 1
840 is a term since its aliquot unitary divisors are {1, 3, 5, 7, 8, 15, 21, 24, 35, 40, 56, 105, 120, 168, 280} and 1 + 5 + 7 + 8 + 15 + 35 + 40 + 56 + 105 + 120 + 168 + 280 = 840, and its nonunitary divisors are {2, 4, 6, 10, 12, 14, 20, 28, 30, 42, 60, 70, 84, 140, 210, 420} and 70 + 140 + 210 + 420 = 840.
-
pspQ[n_] := Module[{d = Divisors[n], ud, nd, x}, ud = Select[d, CoprimeQ[#, n/#] &]; nd = Complement[d, ud]; ud = Most[ud]; Plus @@ ud >= n && Plus @@ nd >= n && SeriesCoefficient[Series[Product[1 + x^ud[[i]], {i, Length[ud]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^nd[[i]], {i, Length[nd]}], {x, 0, n}], n] > 0]; Select[Range[10^4], pspQ]
A348523
Numbers that are both infinitary and noninfinitary abundant numbers.
Original entry on oeis.org
960, 1440, 1800, 2016, 2400, 2940, 3240, 3528, 3780, 4536, 4860, 6720, 7260, 8640, 10080, 10140, 10560, 12096, 12480, 12600, 13860, 14784, 15120, 15360, 15840, 16320, 16380, 16800, 17472, 17640, 18240, 18480, 18720, 18900, 19008, 19800, 20160, 21420, 21600, 21840
Offset: 1
960 is a term since A049417(960) = 2040 > 2*960 = 1920 and A348271(960) = 1008 > 960.
-
f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := (i = isigma[n]) > 2*n && DivisorSigma[1, n] - i > n; Select[Range[10^4], q]
A364976
3-abundant numbers k such that k/(sigma(k)-3*k) is an integer.
Original entry on oeis.org
180, 240, 360, 420, 540, 600, 780, 1080, 1344, 1872, 1890, 2016, 2184, 2352, 2376, 2688, 3192, 3276, 3744, 4284, 4320, 4680, 5292, 5376, 5796, 6048, 6552, 7128, 7440, 8190, 10416, 13776, 14850, 18600, 19824, 19872, 20496, 21528, 22932, 25056, 26208, 26496, 26784
Offset: 1
180 is a term since sigma(180) - 3*180 = 6 > 0 and 180 is divisible by 6.
-
Select[Range[27000], (d = DivisorSigma[1, #] - 3*#) > 0 && Divisible[#, d] &]
-
is(n) = {my(d = sigma(n) - 3*n); d > 0 && n%d == 0;}
Comments