A240975 The number of distinct prime factors of n^3-1.
0, 1, 2, 2, 2, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 4, 2, 2, 3, 2, 3, 3, 4, 2, 4, 3, 3, 2, 4, 3, 4, 3, 2, 3, 4, 4, 4, 2, 4, 3, 3, 3, 4, 3, 4, 4, 4, 3, 4, 2, 4, 3, 4, 2, 4, 4, 3, 4, 3, 3, 5, 2, 4, 4, 3, 3, 5, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 5, 2
Offset: 1
Examples
3^3-1 = 26 = 2*13, so a(3) = 2. 0 has no prime factors, so a(1) = 0.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A240975 := proc(n) A001221(n^3-1) ; end proc:
-
Mathematica
a[n_] := PrimeNu[n^3-1]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Sep 13 2024 *)
-
PARI
a(n) = if(n<=1,0,omega(n^3-1)); \\ Joerg Arndt, Aug 06 2014
-
Python
from sympy import primefactors def A240975(n): return len(primefactors(n**3-1)) # Chai Wah Wu, Aug 06 2014
Formula
a(prime(n)) = A245909(n).
Comments