cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A240975 The number of distinct prime factors of n^3-1.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 4, 2, 2, 3, 2, 3, 3, 4, 2, 4, 3, 3, 2, 4, 3, 4, 3, 2, 3, 4, 4, 4, 2, 4, 3, 3, 3, 4, 3, 4, 4, 4, 3, 4, 2, 4, 3, 4, 2, 4, 4, 3, 4, 3, 3, 5, 2, 4, 4, 3, 3, 5, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 5, 2
Offset: 1

Views

Author

R. J. Mathar, Aug 05 2014

Keywords

Examples

			3^3-1 = 26 = 2*13, so a(3) = 2.
0 has no prime factors, so a(1) = 0.
		

Crossrefs

Programs

  • Maple
    A240975 := proc(n)
        A001221(n^3-1) ;
    end proc:
  • Mathematica
    a[n_] := PrimeNu[n^3-1]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Sep 13 2024 *)
  • PARI
    a(n) = if(n<=1,0,omega(n^3-1)); \\ Joerg Arndt, Aug 06 2014
  • Python
    from sympy import primefactors
    def A240975(n):
        return len(primefactors(n**3-1)) # Chai Wah Wu, Aug 06 2014
    

Formula

a(prime(n)) = A245909(n).
a(n) = A001221(A068601(n)) for n >= 2. - Michel Marcus, Aug 06 2014

A268861 Cubefree numbers n such that n + 1 is a perfect cube.

Original entry on oeis.org

7, 26, 63, 124, 215, 342, 511, 1330, 1727, 2196, 2743, 3374, 4095, 7999, 9260, 10647, 12166, 13823, 17575, 19682, 24388, 26999, 29790, 32767, 39303, 42874, 46655, 54871, 59318, 63999, 74087, 79506, 85183, 91124, 103822, 110591, 124999, 132650, 140607, 148876
Offset: 1

Views

Author

K. D. Bajpai, Feb 14 2016

Keywords

Comments

Intersection of A004709 and A068601. - Michel Marcus, Feb 15 2016

Examples

			a(2) = 26 = 2 * 13 that is cubefree. 26 + 1 = 27 = 3^3 (perfect cube).
a(4) = 124 = 2 * 2 * 31 that is cubefree. 124 + 1 = 125 = 5^3 (perfect cube).
		

Crossrefs

Programs

  • Maple
    cubefree:= proc(n) local t;
      max(seq(t[2],t=ifactors(n)[2])) <= 2
    end proc:
    select(cubefree, [seq(i^3-1,i=2..100)]); # Robert Israel, Mar 03 2016
  • Mathematica
    Select[Range[150000], FreeQ[FactorInteger[#], {, k /; k > 2}] && IntegerQ[CubeRoot[# + 1]] &]
    Select[Range[2,70]^3,Max[FactorInteger[#-1][[All,2]]]<3&]-1 (* Harvey P. Dale, Oct 11 2021 *)
  • PARI
    for(n=1, 1e5, f = factor(n)[, 2]; if((#f == 0) || vecmax(f) < 3, if(ispower(n + 1, 3), print1(n, ", "))));

A271717 Integers k such that both k and k^3-1 are the sum of two positive cubes (see A003325).

Original entry on oeis.org

9, 11664, 36864, 38134, 345744, 1750329, 4782969, 20820969, 47775744, 65804544, 95004009, 150994944, 448084224, 733055625, 1093955625, 1416167424, 2197265625, 4318066944, 5194805625, 6198727824, 7169347584, 10771948944, 13013105625, 19591041024, 32427005625
Offset: 1

Views

Author

Altug Alkan, Apr 12 2016

Keywords

Comments

Values of a^3 + b^3 such that (a^3 + b^3)^3 - 1 is of the form x^3 + y^3 where a, b, x, y > 0.
38134 = 2*23*829 is the first term that is nonsquare. What are the next square terms of this sequence?
n is a member of A007412 and n^3 is a member of A003072, obviously.

Examples

			9 is a term because 9 = 1^3 + 2^3 and 9^3 - 1 = 6^3 + 8^3.
		

Crossrefs

Programs

  • PARI
    isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1));
    for(n=1, 1e7, if(isA003325(n) && isA003325(n^3-1), print1(n, ", ")));

Extensions

a(8)-a(16) from Chai Wah Wu, Apr 17 2016
a(17)-a(25) from Chai Wah Wu, Jul 21 2025

A274578 Nonsquare k such that k^3 - 1 is the average of two positive cubes.

Original entry on oeis.org

2305, 2629, 4117, 7060, 37444, 46081, 113320, 208545, 449569, 474553, 507325, 1224757, 1499068, 1927405, 1931077, 2263129, 2350909, 2447596, 3107841, 4065517, 4274932, 4303321, 5646685, 6582865, 7225597, 10386273, 18432001, 21936709, 24218425, 24362989, 27351417
Offset: 1

Views

Author

Altug Alkan, Jun 29 2016

Keywords

Comments

The equation x^3 + y^3 = 2*z^3 has no integer solution triple (x, y, z) for x > y and z is nonzero. So this sequence focuses on the equation x^3 + y^3 = 2*(z^3 - 1) where x, y > 0.

Examples

			2305 is a term because it is not a square and 2305^3 - 1 = (144^3 + 2904^3) / 2.
		

Crossrefs

Programs

  • PARI
    isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1));
    lista(nn) = for(n=1, nn, if(isA003325(2*(n^3-1)) && !issquare(n), print1(n, ", ")));

Extensions

a(9)-a(25) from Chai Wah Wu, Aug 07 2020
a(26)-a(31) from Chai Wah Wu, Jun 30 2025

A362496 Square array A(n, k), n, k >= 0, read by upwards antidiagonals; if Newton's method applied to the complex function f(z) = z^3 - 1 and starting from n + k*i reaches or converges to exp(2*r*i*Pi/3) for some r in 0..2, then A(n, k) = r, otherwise A(n, k) = -1 (where i denotes the imaginary unit).

Original entry on oeis.org

-1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Rémy Sigrist, Apr 22 2023

Keywords

Comments

This sequence is related to the Newton fractal, and exhibits similar rich patterns (see illustration in Links section).

Examples

			Array A(n, k) begins:
  n\k |  0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
  ----+------------------------------------------------------
    0 | -1  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1
    1 |  0  0  0  1  1  1  1  1  1  1   1   1   1   1   1   1
    2 |  0  0  0  0  2  1  1  1  1  1   1   1   1   1   1   1
    3 |  0  0  0  0  0  2  2  1  1  1   1   1   1   1   1   1
    4 |  0  0  0  0  0  0  1  2  2  1   2   1   1   1   1   1
    5 |  0  0  0  0  0  0  0  0  2  2   0   1   1   1   1   1
    6 |  0  0  0  0  0  0  0  0  2  1   0   2   2   1   2   2
    7 |  0  0  0  0  0  0  0  0  0  0   0   2   2   2   1   0
    8 |  0  0  0  0  0  0  0  0  0  0   0   1   2   2   2   0
    9 |  0  0  0  0  0  0  0  0  0  0   0   0   2   1   1   0
   10 |  0  0  0  0  0  0  0  0  0  0   0   0   0   2   0   0
   11 |  0  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0
   12 |  0  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0
   13 |  0  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0
   14 |  0  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0
   15 |  0  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0
		

Crossrefs

Cf. A068601.

Programs

  • PARI
    See Links section.

A062841 Palindromes of the form k^3-1.

Original entry on oeis.org

0, 7, 999, 999999, 258474852, 999999999, 999999999999, 999999999999999, 999999999999999999, 999999999999999999999, 999999999999999999999999, 999999999999999999999999999, 999999999999999999999999999999, 999999999999999999999999999999999
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Comments

Sequence is infinite as (10^k)^3-1 is a term for all k >= 0. - Michael S. Branicky, Mar 27 2021

Examples

			999 = 10^3-1 and is a palindrome.
		

Crossrefs

Intersection of A002113 and A068601.

Programs

  • Mathematica
    For[n=0,n<100000000,n++,If[n^3-1==IntegerReverse[n^3-1],Print[n^3-1]]] (* Dylan Delgado, Mar 02 2021 *)
    Select[Range[10^7]^3-1,PalindromeQ] (* The program generates the first ten terms of the sequence. *) (* Harvey P. Dale, Oct 08 2023 *)
  • Python
    def afind(limit):
      for n in range(limit+1):
        s = str(n**3 - 1)
        if s == s[::-1]: print(int(s), end=", ")
    print(afind(10**7)) # Michael S. Branicky, Mar 27 2021

Extensions

One more term from Emeric Deutsch, Feb 26 2005
a(10)-a(14) from Michael S. Branicky, Mar 27 2021

A117197 a(n) = (n^3 - 1)^3.

Original entry on oeis.org

0, 343, 17576, 250047, 1906624, 9938375, 40001688, 133432831, 385828352, 997002999, 2352637000, 5150827583, 10590025536, 20638466407, 38409197624, 68669157375, 118515478528, 198257271191, 322546580712, 511808023999
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 21 2006

Keywords

Comments

Cubes a(1-1),a(8-1),a(27-1),a(64-1),...

Crossrefs

Cf. A000578 (n^3), A068601 (n^3-1).

Programs

Formula

a(n) = n^9 - 3n^6 + 3n^3 - 1.
G.f.: (x^9-2*x^8+694*x^7+14902*x^6+87160*x^5+155914*x^4+89722*x^3+14146*x^2+ 343*x)/(x-1)^10. - Harvey P. Dale, Mar 25 2013 [corrected by Georg Fischer, May 15 2019]
a(n) = A000578(A068601(n)). - Michel Marcus, May 15 2019

Extensions

Edited and corrected by Franklin T. Adams-Watters, Apr 26 2006

A336194 Table read by antidiagonals upwards: T(n,k) = (n - 1)*k^3 - 1, with n > 1 and k > 0.

Original entry on oeis.org

0, 1, 7, 2, 15, 26, 3, 23, 53, 63, 4, 31, 80, 127, 124, 5, 39, 107, 191, 249, 215, 6, 47, 134, 255, 374, 431, 342, 7, 55, 161, 319, 499, 647, 685, 511, 8, 63, 188, 383, 624, 863, 1028, 1023, 728, 9, 71, 215, 447, 749, 1079, 1371, 1535, 1457, 999, 10, 79, 242, 511, 874, 1295, 1714, 2047, 2186, 1999, 1330
Offset: 2

Views

Author

Stefano Spezia, Jul 11 2020

Keywords

Comments

T(n, k) is a sharp upper bound of the tree width of a graph G that does not contain a clique on n vertices nor a minimal separator of size larger than k (see Theorem 2.1 in Pilipczuk et al.).
All the square matrices starting at top left of the table T are singular except for the 2 X 2 submatrix: det([0, 7; 1, 15]) = -7.

Examples

			The table starts at row n = 2 and column k = 1 as:
0   7   26   63  124   215 ...
1  15   53  127  249   431 ...
2  23   80  191  374   647 ...
3  31  107  255  499   863 ...
4  39  134  319  624  1079 ...
5  47  161  383  749  1295 ...
...
		

Crossrefs

Cf. A000578, A001093, A001477 (k = 1), A004771 (k = 2), A068601 (n = 2), A085537, A109129, A123865 (main diagonal), A325543, A325612.

Programs

  • Mathematica
    T[n_,k_]:=(n-1)*k^3-1; Flatten[Table[T[n+1-k,k],{n,2,12},{k,1,n-1}]]
  • PARI
    T(n, k) = (n - 1)*k^3 - 1

Formula

O.g.f.: x^2*y*(y*(7 - 2*y + y^2) + x*(1 - y)^3)/((1 - x)^2*(1 - y)^4).
E.g.f.: -1 + exp(x) - x + exp(y)*x + exp(y)*(1 + y + 3*y^2 + y^3) + exp(x + y)*(-1 +(-1 + x)*y*(1 + 3*y + y^2)).
T(n, k) = n*A000578(k) - A001093(k).
T(n, n) = A085537(n) - 1 for n > 1.
T(n, k) = T(n+1, 1)*T(2, k) + T(n, 1).

A369181 a(n) = (n^3-1)!.

Original entry on oeis.org

1, 5040, 403291461126605635584000000, 1982608315404440064116146708361898137544773690227268628106279599612729753600000000000000
Offset: 1

Views

Author

Karol A. Penson, Jan 15 2024

Keywords

Crossrefs

Programs

  • Maple
    seq((n^3-1)! , n = 1..4);

Formula

a(n) = (2*Pi)^(1/2 - n^2/2)*(n^2)^(n^3 - 1/2)*Product_{j=0..n^2-1} Gamma(n + j/n^2).
a(n) = A000142(A068601(n)).
Previous Showing 31-39 of 39 results.