cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A063528 Smallest number such that it and its successor are both divisible by an n-th power larger than 1.

Original entry on oeis.org

2, 8, 80, 80, 1215, 16767, 76544, 636416, 3995648, 24151040, 36315135, 689278976, 1487503359, 1487503359, 155240824832, 785129144319, 4857090670592, 45922887663615, 157197025673216, 1375916505694208, 2280241934368767, 2280241934368767, 2280241934368767
Offset: 1

Views

Author

Erich Friedman, Aug 01 2001

Keywords

Comments

Lesser of the smallest pair of consecutive numbers divisible by an n-th power.
To get a(j), max exponent[=A051953(n)] of a(j) and 1+a(j) should exceed (j-1).
One can find a solution for primes p and q by solving p^n*i + 1 = q^n*j; then p^n*i is a solution. This solution will be less than (p*q)^n but greater than max(p,q)^n. Thus finding the solutions for 2, 3 (p=2,q=3 and p=3,q=2), one need at most also look at 2, 5 and 3, 5. It appears that the solution with 2, 3 is always optimal. - Franklin T. Adams-Watters, May 27 2011

Examples

			a(4) = 80 since 2^4 = 16 divides 80 and 3^4 = 81 divides 81.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.

Crossrefs

We need A051903(a[n]) > n-1 and A051903(a[n]+1) > n-1.

Programs

  • Mathematica
    k = 4; Do[k = k - 2; a = b = 0; While[ b = Max[ Transpose[ FactorInteger[k]] [[2]]]; a <= n || b <= n, k++; a = b]; Print[k - 1], {n, 0, 19} ]
  • PARI
    b(n,p=2,q=3)=local(i);i=Mod(p,q^n)^-n; min(p^n*lift(i)-1,p^n*lift(-i))
    a(n)=local(r);r=b(n);if(r>5^n,r=min(r,min(b(n,2,5),b(n,3,5))));r /* Franklin T. Adams-Watters, May 27 2011 */

Extensions

More terms from Jud McCranie, Aug 06 2001

A373820 Run-lengths (differing by 0) of antirun-lengths (differing by > 2) of odd primes.

Original entry on oeis.org

2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of the version of A027833 with 1 prepended.

Examples

			The antiruns of odd primes (differing by > 2) begin:
   3
   5
   7  11
  13  17
  19  23  29
  31  37  41
  43  47  53  59
  61  67  71
  73  79  83  89  97 101
 103 107
 109 113 127 131 137
 139 149
 151 157 163 167 173 179
 181 191
 193 197
 199 211 223 227
 229 233 239
 241 251 257 263 269
 271 277 281
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, ...
with runs:
  1  1
  2  2
  3  3
  4
  3
  6
  2
  5
  2
  6
  2  2
  4
  3
  5
  3
  4
with lengths a(n).
		

Crossrefs

Run-lengths of A027833 (if we prepend 1), partial sums A029707.
For runs we have A373819, run-lengths of A251092.
Positions of first appearances are A373827, sorted A373826.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    Length/@Split[Length/@Split[Select[Range[3,1000],PrimeQ],#2-#1>2&]//Most]//Most

A375929 Numbers k such that A002808(k+1) = A002808(k) + 1. In other words, the k-th composite number is 1 less than the next.

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 14, 15, 16, 17, 20, 21, 22, 23, 25, 26, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 76, 77, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

Positions of 1's in A073783 (see also A054546, A065310).

Examples

			The composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... which increase by 1 after positions 3, 4, 7, 8, ...
		

Crossrefs

Positions in A002808 of each element of A068780.
The complement is A065890 shifted.
First differences are A373403 (except first).
The version for non-prime-powers is A375713, differences A373672.
The version for prime-powers is A375734, differences A373671.
The version for non-perfect-powers is A375740.
The version for nonprime numbers is A375926.
A000040 lists the prime numbers, differences A001223.
A000961 lists prime-powers (inclusive), differences A057820.
A002808 lists the composite numbers, differences A073783.
A018252 lists the nonprime numbers, differences A065310.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],CompositeQ]],1]
  • Python
    from sympy import primepi
    def A375929(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+bisection(lambda y:primepi(x+2+y))-2
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024
    
  • Python
    # faster for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        pic, prevc = 0, -1
        for i in count(4):
            if not isprime(i):
                if i == prevc + 1:
                    yield pic
                pic, prevc = pic+1, i
    print(list(islice(agen(), 10000))) # Michael S. Branicky, Sep 17 2024

Formula

a(n) = A375926(n) - 1.

A173919 Numbers that are prime or one less than a prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 22, 23, 28, 29, 30, 31, 36, 37, 40, 41, 42, 43, 46, 47, 52, 53, 58, 59, 60, 61, 66, 67, 70, 71, 72, 73, 78, 79, 82, 83, 88, 89, 96, 97, 100, 101, 102, 103, 106, 107, 108, 109, 112, 113, 126, 127, 130, 131, 136, 137, 138, 139
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 02 2010

Keywords

Comments

Indices of the triangular numbers in A147846.
Integers k such that k or k+1 is prime. - Giovanni Teofilatto, Mar 05 2010
For a given common difference d, there always exists a longest possible arithmetic progression (AP) of primes, and the number of elements k in this AP of primes is necessarily a term of this sequence. See A123556 for explanations. - Bernard Schott, Mar 18 2023

Crossrefs

Complement to A068780. [Giovanni Teofilatto, Mar 11 2010]

Programs

  • Mathematica
    {#-1,#}&/@Prime[Range[40]]//Flatten//Union (* Harvey P. Dale, Dec 21 2018 *)

Formula

Extensions

Definition corrected and sequence extended by R. J. Mathar, Feb 24 2010, Mar 05 2010

A373825 Position of first appearance of n in the run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 13, 11, 105, 57, 33, 69, 59, 29, 227, 129, 211, 341, 75, 321, 51, 45, 407, 313, 459, 301, 767, 1829, 413, 537, 447, 1113, 1301, 1411, 1405, 2865, 1709, 1429, 3471, 709, 2543, 5231, 1923, 679, 3301, 2791, 6555, 5181, 6345, 11475, 2491, 10633
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2024

Keywords

Comments

Positions of first appearances in A373819.

Examples

			The runs of odd primes differing by 2 begin:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths:
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3, ...
with positions of first appearances a(n).
		

Crossrefs

Firsts of A373819 (run-lengths of A251092).
For antiruns we have A373827 (sorted A373826), firsts of A373820, run-lengths of A027833 (partial sums A029707, firsts A373401, sorted A373402).
The sorted version is A373824.
A000040 lists the primes.
A001223 gives differences of consecutive primes (firsts A073051), run-lengths A333254 (firsts A335406), run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A176246, A373403, A373404.

Programs

  • Mathematica
    t=Length/@Split[Length/@Split[Select[Range[3,10000], PrimeQ],#1+2==#2&]//Most]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A068782 Lesser of two consecutive numbers each divisible by a fourth power.

Original entry on oeis.org

80, 624, 1215, 1376, 2400, 2511, 2672, 3807, 3968, 4374, 5103, 5264, 6399, 6560, 7695, 7856, 8991, 9152, 9375, 10287, 10448, 10624, 11583, 11744, 12879, 13040, 14175, 14336, 14640, 15471, 15632, 16767, 16928, 18063, 18224, 19359, 19375
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

The asymptotic density of this sequence is 1 - 2/zeta(4) + Product_{p prime} (1 - 2/p^4) = 0.001856185541538432217... - Amiram Eldar, Feb 16 2021
Below 9508685764, it suffices to check for n such that either n or n+1 is divisible by p^4 for some p <= 19. - Charles R Greathouse IV, Jul 17 2024

Examples

			80 is a term as 80 and 81 both are divisible by a fourth power, 2^4 and 3^4 respectively.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[2, 25000], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 3 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 3 &]
  • PARI
    has(n)=vecmax(factor(n)[,2])>3
    is(n)=has(n+1)&&has(n) \\ Charles R Greathouse IV, Dec 19 2018
    
  • PARI
    list(lim)=my(v=List(),x=1); forfactored(n=81,lim\1+1, if(vecmax(n[2][,2])>3, if(x,listput(v,n[1]-1),x=1),x=0)); Vec(v) \\ Charles R Greathouse IV, Dec 19 2018

Extensions

a(0) = 0 removed by Charles R Greathouse IV, Dec 19 2018

A068783 Lesser of two consecutive numbers each divisible by a fifth power.

Original entry on oeis.org

1215, 6560, 8991, 9375, 14336, 16767, 22112, 24543, 29888, 32319, 37664, 40095, 45440, 47871, 53216, 55647, 60992, 63423, 68768, 71199, 76544, 78975, 84320, 86751, 90624, 92096, 94527, 99872, 102303, 107648, 109375, 110079, 115424
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

The asymptotic density of this sequence is 1 - 2/zeta(5) + Product_{p prime} (1 - 2/p^5) = 0.000284512101137896862... - Amiram Eldar, Feb 16 2021

Crossrefs

Programs

  • Mathematica
    Select[ Range[2, 250000], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 4 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 4 &]
    SequencePosition[Table[If[Max[FactorInteger[n][[All,2]]]>4,1,0],{n,120000}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 25 2018 *)

A068784 Lesser of two consecutive numbers each divisible by a sixth power.

Original entry on oeis.org

16767, 29888, 63423, 76544, 109375, 110079, 123200, 156735, 169856, 203391, 216512, 250047, 263168, 296703, 309824, 343359, 356480, 390015, 403136, 436671, 449792, 483327, 496448, 529983, 543104, 576639, 589760, 623295, 636416, 669951
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

The asymptotic density of this sequence is 1 - 2/zeta(6) + Product_{p prime} (1 - 2/p^6) = 0.000045351901298014669... - Amiram Eldar, Feb 16 2021

Crossrefs

Programs

  • Mathematica
    Select[ Range[2, 10^6], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 5 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 5 &]

A373819 Run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 10, 2, 4, 1, 7, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 18, 3, 2, 1, 2, 1, 17, 2, 1, 2, 2, 1, 6, 1, 9, 1, 3, 1, 1, 1, 1, 1, 1, 1, 8, 1, 3, 1, 2, 2, 15, 1, 1, 1, 4, 1, 1, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2024

Keywords

Comments

Run-lengths of A251092.

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with runs:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths a(n).
		

Crossrefs

Run-lengths of A251092.
For antiruns we have A373820, run-lengths of A027833 (if we prepend 1).
Positions of first appearances are A373825, sorted A373824.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    Length/@Split[Length/@Split[Select[Range[3,1000], PrimeQ],#1+2==#2&]//Most]//Most

A375739 Maximum of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

2, 5, 6, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.
Also non-perfect-powers x such that x + 1 is also a non-perfect-power.

Examples

			The initial anti-runs are the following, whose maxima are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For nonprime numbers we have A068780, runs A006093 with 2 removed.
For squarefree numbers we have A007674, runs A373415.
For nonsquarefree numbers we have A068781, runs A072284 minus 1 and shifted.
For prime-powers we have A006549, runs A373674.
For non-prime-powers we have A255346, runs A373677.
For anti-runs of non-perfect-powers:
- length: A375736
- first: A375738
- last: A375739 (this)
- sum: A375737
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Max/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most
    - or -
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Select[Range[100],radQ[#]&&radQ[#+1]&]
Previous Showing 11-20 of 26 results. Next