cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A279221 Expansion of Product_{k>=1} 1/(1 - x^(k^2*(k+1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 12, 12, 12, 12, 13, 13, 16, 16, 16, 16, 17, 17, 20, 20, 20, 20, 21, 21, 25, 25, 25, 25, 27, 27, 31, 31, 31, 31, 33, 33, 37, 37, 37, 37, 39, 39, 44, 44, 44, 45, 48, 48, 53, 53, 54, 55, 58, 58, 63, 63, 64, 65, 68, 68, 74
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero pentagonal pyramidal numbers (A002411).

Examples

			a(7) = 2 because we have [6, 1] and [1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k^2 (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k^2*(k+1)/2)).

A279278 Expansion of Product_{k>=1} (1 + x^(k*(k+1)*(k+2)/6)).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct tetrahedral numbers (A000292).

Examples

			a(35) = 2 because we have [35] and [20, 10, 4, 1].
		

Crossrefs

Cf. A000292, A007294, A024940, A068980, A350205 (positions of records).

Programs

  • Mathematica
    nmax=120; CoefficientList[Series[Product[1 + x^(k (k + 1) (k + 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(k+1)*(k+2)/6)).

A279222 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(4*k-1)/6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 12, 13, 15, 16, 16, 16, 16, 16, 17, 19, 20, 20, 20, 20, 20, 21, 23, 24, 25, 25, 25, 25, 26, 28, 30, 31, 31, 31, 31, 32, 34, 36, 37, 37, 37, 37, 38, 40, 42, 43, 44, 44, 44
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero hexagonal pyramidal numbers (A002412).

Examples

			a(8) = 2 because we have [7, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (4 k - 1)/6)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(4*k-1)/6)).

A298269 Number of partitions of the n-th tetrahedral number into tetrahedral numbers.

Original entry on oeis.org

1, 1, 2, 4, 11, 29, 94, 304, 1005, 3336, 11398, 38739, 132340, 451086, 1541074, 5242767, 17779666, 60048847, 202124143, 677000711, 2256910444, 7486274436, 24713275977, 81162110629, 265192045408, 862061443031, 2788194736946, 8972104829849, 28726271274133, 91515498561954, 290116750935925
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2018

Keywords

Examples

			a(3) = 4 because third tetrahedral number is 10 and we have [10], [4, 4, 1, 1], [4, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^(k (k + 1) (k + 2)/6)), {k, 1, n}], {x, 0, n (n + 1) (n + 2)/6}], {n, 0, 30}]

Formula

a(n) = [x^A000292(n)] Product_{k>=1} 1/(1 - x^A000292(k)).
a(n) = A068980(A000292(n)).

A226748 Number of partitions of n into Platonic numbers, cf. A053012.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 14, 14, 20, 20, 26, 27, 37, 37, 46, 47, 62, 63, 77, 80, 101, 103, 125, 130, 160, 164, 194, 203, 245, 253, 296, 311, 368, 381, 440, 463, 540, 562, 642, 677, 780, 814, 922, 973, 1107, 1157, 1302, 1375, 1552, 1626
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2013

Keywords

Examples

			First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, ...
a(10) = #{10, 8+1+1, 6+4, 6+1+1+1+1, 4+4+1+1, 4+6x1, 10x1} = 7;
a(11) = #{10+1, 8+1+1+1, 6+4+1, 6+5x1, 4+4+1+1+1, 4+7x1, 11x1} = 7;
a(12) = #{12, 10+1+1, 8+4, 8+1+1+1+1, 6+6, 6+4+1+1, 6+6x1, 4+4+4, 4+4+1+1+1+1, 4+8x1, 12x1} = 11;
a(13) = #{12+1, 10+1+1+1, 8+4+1, 8+5x1, 6+6+1, 6+4+1+1+1, 6+7x1, 4+4+4+1, 4+4+5x1, 4+9x1, 13x1} = 11;
a(14) = #{12+1+1, 10+4, 10+1+1+1+1, 8+6, 8+4+1+1, 8+6x1, 6+6+1+1, 6+4+4, 6+4+1+1+1+1, 6+8x1, 4+4+4+1+1, 4+4+6x1, 4+10x1, 14x1} = 14;
a(15) = #{12+1+1+1, 10+4+1, 10+5x1, 8+6+1, 8+4+1+1+1, 8+7x1, 6+6+1+1+1, 6+4+4+1, 6+4+5x1, 6+9x1, 4+4+4+1+1+1, 4+4+7x1, 4+11x1, 15x1} = 14;
a(16) = #{12+4, 12+1+1+1+1, 10+6, 10+4+1+1, 10+6x1, 8+8, 8+6+1+1, 8+4+4, 8+4+1+1+1+1, 8+8x1, 6+6+4, 6+6+1+1+1+1, 6+4+4+1+1, 6+4+6x1, 6+10x1, 4+4+4+4, 4+4+4+1+1+1+1, 4+4+8x1, 4+12x1, 16x1} = 20.
		

Crossrefs

Programs

  • Haskell
    a226748 = p a053012_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m

A279223 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(5*k-2)/6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 16, 16, 16, 16, 17, 17, 18, 18, 20, 20, 20, 20, 21, 21, 22, 22, 24, 24, 25, 25, 26, 26, 27, 27, 29, 29, 31, 31, 32, 32, 33, 33, 35, 35, 37, 37
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero heptagonal pyramidal numbers (A002413).

Examples

			a(9) = 2 because we have [8, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax=95; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (5 k - 2)/6)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(5*k-2)/6)).

A279224 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k-1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 16, 16, 17, 17, 17, 18, 18, 18, 19, 20, 20, 21, 21, 21, 22, 22, 22, 23, 24, 24, 26, 26, 26, 27, 27, 27, 28, 29, 29, 31, 32
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero octagonal pyramidal numbers (A002414).

Examples

			a(10) = 2 because we have [9, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (2 k - 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k-1)/2)).

A303170 Number of ordered ways of writing n as a sum of n tetrahedral numbers.

Original entry on oeis.org

1, 1, 1, 1, 5, 21, 61, 141, 309, 757, 2111, 6051, 16721, 44617, 118301, 318501, 871781, 2400741, 6596953, 18067329, 49460555, 135697395, 373271515, 1028451579, 2835353337, 7819016521, 21572619771, 59562583471, 164586609409, 455114644297, 1259191262441, 3485551053561
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Crossrefs

Main diagonal of A290429.

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k + 1) (k + 2)/6), {k, 0, n}]^n, {x, 0, n}], {n, 0, 31}]

Formula

a(n) = [x^n] (Sum_{k>=0} x^(k*(k+1)*(k+2)/6))^n.
a(n) = A290429(n,n).

A331919 Number of compositions (ordered partitions) of n into distinct tetrahedral numbers.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 2, 6, 0, 0, 0, 0, 1, 2, 0, 0, 2, 6, 0, 0, 0, 0, 2, 6, 0, 0, 6, 25, 2, 0, 0, 2, 6, 0, 0, 0, 0, 2, 6, 0, 0, 6, 24, 0, 0, 0, 0, 2, 7, 2, 0, 6, 26, 6, 0, 0, 0, 6, 26, 6, 0, 24, 126, 24, 0, 0, 0, 0, 2, 6, 0, 0, 6, 24, 0, 0, 1, 2, 6, 24, 2, 6, 24
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2020

Keywords

Examples

			a(15) = 6 because we have [10, 4, 1], [10, 1, 4], [4, 10, 1], [4, 1, 10], [1, 10, 4] and [1, 4, 10].
		

Crossrefs

Programs

  • Maple
    N:= 200: # for a(0)..a(N)
    G:= mul(1+t*x^(i*(i+1)*(i+2)/6), i=1..floor((6*N)^(1/3))):
    F:= proc(n) local R, k, v;
      R:= coeff(G, x, n);
      add(k!*coeff(R, t, k), k=1..degree(R, t))
    end proc:
    F(0):= 1:
    map(F, [$0..N]); # Robert Israel, Feb 03 2020
  • Mathematica
    M = 100;
    G = Product[1 + t x^(i(i+1)(i+2)/6), {i, 1, Floor[(6M)^(1/3)]}];
    F[n_] := Module[{R, k, v}, R = Coefficient[G, x, n]; Sum[k! Coefficient[R, t, k], {k, 1, Exponent[R, t]}]];
    F[0] = 1;
    F /@ Range[0, M] (* Jean-François Alcover, Jun 20 2020, after Robert Israel *)

A338586 Number of partitions of the n-th tetrahedral number into exactly n positive tetrahedral numbers.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 2, 5, 5, 20, 35, 75, 154, 336, 730, 1570, 3394, 7339, 16085, 35015, 76269, 164821, 359704, 782004, 1696804, 3668860, 7953962, 17184203, 37093184, 79825297, 171824175, 368838299, 790404448, 1690297309, 3610816466, 7696144659, 16374004711, 34766160358
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 08 2020

Keywords

Examples

			The 6th tetrahedral number is 56 and 56 = 1 + 1 + 4 + 10 + 20 + 20 = 4 + 4 + 4 + 4 + 20 + 20, so a(6) = 2.
		

Crossrefs

Formula

a(n) = [x^A000292(n) y^n] Product_{j>=1} 1 / (1 - y*x^A000292(j)).
Previous Showing 11-20 of 31 results. Next