cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 101 results. Next

A092560 Decimal expansion of e^(-5).

Original entry on oeis.org

0, 0, 6, 7, 3, 7, 9, 4, 6, 9, 9, 9, 0, 8, 5, 4, 6, 7, 0, 9, 6, 6, 3, 6, 0, 4, 8, 4, 2, 3, 1, 4, 8, 4, 2, 4, 2, 4, 8, 8, 4, 9, 5, 8, 5, 0, 2, 7, 3, 5, 5, 0, 8, 5, 4, 3, 0, 3, 0, 5, 5, 3, 1, 5, 7, 2, 6, 8, 3, 5, 2, 2, 5, 1, 5, 6, 0, 4, 0, 6, 2, 2, 8, 1, 4, 4, 9, 1, 3, 8, 8, 4, 4, 2, 0, 8, 3, 6, 1, 5, 4, 8, 0, 5, 5
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 09 2004

Keywords

Examples

			0.006737946999085467096636048423148424248849585027...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[E^-5, 10, 100, -1]] (* Paolo Xausa, Feb 09 2025 *)

A092577 Decimal expansion of e^(-6).

Original entry on oeis.org

0, 0, 2, 4, 7, 8, 7, 5, 2, 1, 7, 6, 6, 6, 6, 3, 5, 8, 4, 2, 3, 0, 4, 5, 1, 6, 7, 4, 3, 0, 8, 1, 6, 6, 6, 7, 8, 9, 1, 5, 0, 6, 4, 7, 9, 5, 8, 5, 5, 3, 3, 9, 4, 5, 0, 5, 0, 8, 7, 8, 6, 2, 4, 0, 0, 6, 2, 7, 6, 1, 9, 4, 2, 2, 8, 2, 9, 3, 9, 9, 0, 1, 8, 2, 3, 7, 4, 7, 2, 0, 4, 0, 1, 5, 8, 2, 6, 6, 7, 8, 1, 8, 0, 0, 9
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 09 2004

Keywords

Examples

			0.0024787521766663
		

Crossrefs

Programs

  • Mathematica
    Join[{0,0},RealDigits[1/E^6,10,120][[1]]] (* Harvey P. Dale, Sep 29 2013 *)

A092578 Decimal expansion of e^(-7).

Original entry on oeis.org

0, 0, 0, 9, 1, 1, 8, 8, 1, 9, 6, 5, 5, 5, 4, 5, 1, 6, 2, 0, 8, 0, 0, 3, 1, 3, 6, 0, 8, 4, 4, 0, 9, 2, 8, 2, 6, 2, 6, 4, 7, 3, 7, 2, 4, 5, 2, 7, 4, 3, 6, 0, 5, 3, 8, 4, 0, 8, 1, 6, 1, 3, 3, 4, 2, 1, 8, 8, 9, 4, 7, 9, 8, 8, 9, 3, 1, 0, 3, 0, 6, 5, 2, 9, 3, 2, 6, 2, 7, 9, 0, 0, 6, 4, 6, 4, 9, 0, 0, 4, 4, 2, 0, 8, 7
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 09 2004

Keywords

Examples

			0.00091188196555451620800313608440928262647372452743605...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[E^-7, 10, 100, -1]] (* Paolo Xausa, Feb 09 2025 *)

A125313 Decimal expansion of 2*exp(-gamma).

Original entry on oeis.org

1, 1, 2, 2, 9, 1, 8, 9, 6, 7, 1, 3, 3, 7, 7, 0, 3, 3, 9, 6, 4, 8, 2, 8, 6, 4, 2, 9, 5, 8, 1, 7, 6, 1, 5, 7, 3, 5, 3, 1, 4, 2, 0, 7, 7, 3, 8, 5, 0, 3, 0, 6, 3, 3, 6, 3, 0, 8, 3, 1, 8, 1, 5, 2, 0, 9, 0, 1, 7, 5, 9, 3, 4, 1, 4, 8, 5, 7, 1, 2, 7, 4, 2, 6, 5, 7, 4, 2, 3, 1, 7, 8, 6, 8, 4, 2, 8, 7, 1, 7, 5, 3, 4, 6, 3
Offset: 1

Views

Author

Robert G. Wilson v, Dec 08 2006

Keywords

Examples

			1.12291896713377033964828642958176157353142077385030633630831815209...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3, Landau-Ramanujan constant, p. 100.

Programs

  • Magma
    R:= RealField(100); 2*Exp(-EulerGamma(R)); // G. C. Greubel, Sep 05 2018
  • Mathematica
    RealDigits[2*Exp[-EulerGamma], 10, 111][[1]]
  • PARI
    default(realprecision, 100); 2*exp(-Euler) \\ G. C. Greubel, Sep 05 2018
    

Formula

Equals 2*A080130, 2*A001113^(-A001620) and 2/A073004 = 2/A068985^A001620.
Equals A088540 * A088541. - Jean-François Alcover, Jun 04 2014
Equals exp(A002162 - A001620). - John W. Nicholson, Apr 03 2015

A181589 Least value of n such that P(n) - 1/e < 10^(-i), i=1,2,3... . P(n) = (n/(n+1))^(n-1) the probability of a random forest on n be a tree.

Original entry on oeis.org

6, 56, 553, 5519, 55183, 551820, 5518192, 55181917, 551819162, 5518191618, 55181916176, 551819161758, 5518191617572, 55181916175717, 551819161757164, 5518191617571636, 55181916175716349, 551819161757163483
Offset: 1

Views

Author

Washington Bomfim, Oct 31 2010

Keywords

Comments

The probability P(n) = A000169(n)/A000272(n+1). It is known that lim_{n->inf}p(n) = 1/e. (See Flajolet and Sedgewick link, pp 632, where we can find a function of the number of components k).
Both P(n) and the probability that a permutation on n objects be a derangement tend to 1/e when n rises to infinity. So the events a random forest be a tree and a random permutation be a derangement become equiprobable as n tends to infinity.
The probability P(n) approaches 1/e quite slowly as this sequence shows. See image clicking the first link.

Examples

			a(1) = 6, a(2) = 56, so for n in the interval 6...55 if we use 1/e as the probability P, we make an error less than 10^(-1). In general if n is in the interval a(i), ... , a(i+1)-1, this error is less than 10^(-i).
		

Crossrefs

A185362 Decimal expansion of 2^(1/e).

Original entry on oeis.org

1, 2, 9, 0, 4, 5, 4, 6, 4, 9, 0, 8, 7, 5, 8, 5, 4, 8, 5, 4, 9, 3, 1, 6, 4, 3, 6, 6, 1, 2, 8, 3, 6, 4, 5, 3, 1, 4, 8, 8, 7, 2, 4, 7, 4, 2, 8, 8, 9, 7, 9, 9, 6, 6, 3, 7, 2, 1, 8, 1, 2, 7, 4, 2, 7, 5, 3, 6, 3, 8, 8, 1, 8, 2, 1, 1, 7, 5, 3, 0, 5, 2, 3, 1, 3, 9
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A068985, decimal expansion of 1/e; A003417 with an initial 0 added, continued fraction of 1/e.

Programs

A195326 Numerators of fractions leading to e - 1/e (A174548).

Original entry on oeis.org

0, 2, 2, 7, 7, 47, 47, 5923, 5923, 426457, 426457, 15636757, 15636757, 7318002277, 7318002277, 1536780478171, 1536780478171, 603180793741, 603180793741, 142957467201379447, 142957467201379447
Offset: 0

Views

Author

Paul Curtz, Oct 12 2011

Keywords

Comments

The sequence of approximations of exp(1) obtained by truncating the Taylor series of exp(x) after n terms is A061354(n)/A061355(n) = 1, 2, 5/2, 8/3, 65/24, ...
A Taylor series of exp(-1) is 1, 0, 1/2, 1/3, 3/8, ... and (apart from the first 2 terms) given by A000255(n)/A001048(n). Subtracting both sequences term by term we obtain a series for exp(1) - exp(-1) = 0, 2, 2, 7/3, 7/3, 47/20, 47/20, 5923/2520, 5923/2520, 426457/181440, 426457/181440, ... which defines the numerators here.
Each second of the denominators (that is 3, 2520, 19958400, ...) is found in A085990 (where each third term, that is 60, 19958400, ...) is to be omitted.
This numerator sequence here is basically obtained by doubling entries of A051397, A009628, A087208, or A186763, caused by the standard associations between cosh(x), sinh(x) and exp(x).

Examples

			a(0) =  1  -  1;
a(1) =  2  -  0;
a(2) = 5/2 - 1/2.
		

Crossrefs

Programs

  • Maple
    taylExp1 := proc(n)
            add(1/j!,j=0..n) ;
    end proc:
    A000255 := proc(n)
            if n <=1 then
                    1;
            else
                    n*procname(n-1)+(n-1)*procname(n-2) ;
            end if;
    end proc:
    A001048 := proc(n)
            n!+(n-1)! ;
    end proc:
    A195326 := proc(n)
            if n = 0 then
                    0;
            elif n =1 then
                    2;
            else
                    taylExp1(n) -A000255(n-2)/A001048(n-1);
            end if;
              numer(%);
    end proc:
    seq(A195326(n),n=0..20) ; # R. J. Mathar, Oct 14 2011

Extensions

Material meant to be placed in other sequences removed by R. J. Mathar, Oct 14 2011

A270401 Denominators of r-Egyptian fraction expansion for 1/e, where r(k) = 1/Fibonacci(k+1).

Original entry on oeis.org

3, 15, 275, 306142, 119655359789, 11580087075793732204662, 149024368678486978900547818363959440890696944, 23508494642625759146052819702452314132546312046986774534693830017181700550956750715996250
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			1/e = 1/3 + 1/(2*15) + 1/(3*275) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/Fibonacci[k+1]; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = 1/E; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/fibonacci(k+1);
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=exp(-1)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 22 2016

A270524 Denominators of r-Egyptian fraction expansion for 1/e, where r(k) = 1/k!.

Original entry on oeis.org

3, 15, 138, 8259, 239711437, 11635520651781427, 27093570249697895705902826783521, 172213812234178083415955164135638766722297909315047111470339241
Offset: 1

Views

Author

Clark Kimberling, Mar 30 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			1/e = 1/(1*3) + 1/(2*15) + 1/(6*138) + 1/(24*8259) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/k!; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = 1/E; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/k!;
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=exp(-1)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 31 2016

A270553 Denominators of r-Egyptian fraction expansion for 1/e, where r(k) = 1/(2k-1).

Original entry on oeis.org

3, 10, 165, 218673, 75510967206, 14666670996451472494064, 318033435047744040119174255756277946082958110, 222562499295932133989982996162129528076446080094832884826693648678455802606574139206041317
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			1/e = 1/(1*3) + 1/(3*10) + 1/(5*165) + 1/(7*218673) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = 1/E; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/(2*k-1);
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=exp(-1)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Apr 03 2016
Previous Showing 71-80 of 101 results. Next