cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A341772 a(n) = Sum_{d|n} phi(d) * J_2(n/d).

Original entry on oeis.org

1, 4, 10, 17, 28, 40, 54, 70, 94, 112, 130, 170, 180, 216, 280, 284, 304, 376, 378, 476, 540, 520, 550, 700, 716, 720, 858, 918, 868, 1120, 990, 1144, 1300, 1216, 1512, 1598, 1404, 1512, 1800, 1960, 1720, 2160, 1890, 2210, 2632, 2200, 2254, 2840, 2682, 2864, 3040, 3060, 2860, 3432, 3640
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Comments

Dirichlet convolution of Euler totient function phi (A000010) with Jordan function J_2 (A007434).

Crossrefs

Programs

  • Mathematica
    Jordan2[n_] := Sum[MoebiusMu[n/d] d^2, {d, Divisors[n]}]; a[n_] := Sum[EulerPhi[d] Jordan2[n/d], {d, Divisors[n]}]; Table[a[n], {n, 55}]
    f[p_, e_] := p^(e-3)*(p-1)*(p^e*(p+1)^2-p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 31 2024 *)
  • PARI
    J2(n) = sumdiv(n, d, d^2 * moebius(n/d)); \\ A007434
    a(n) = sumdiv(n, d, eulerphi(d) * J2(n/d)); \\ Michel Marcus, Feb 20 2021

Formula

Dirichlet g.f.: zeta(s-1) * zeta(s-2) / zeta(s)^2.
a(n) = Sum_{k=1..n} J_2(gcd(n,k)).
a(n) = Sum_{d|n} psi(d) * phi(d) * phi(n/d).
a(n) = Sum_{d|n} d * phi(d) * A029935(n/d).
a(n) = Sum_{d|n} d * sigma(d) * A007427(n/d).
a(n) = Sum_{d|n} d * A321322(n/d).
a(n) = Sum_{d|n} d * A023900(d) * A338164(n/d).
a(n) = Sum_{d|n} d^2 * A007431(n/d).
a(n) = Sum_{d|n} mu(n/d) * A069097(d).
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (18*zeta(3)^2). - Vaclav Kotesovec, Feb 20 2021
a(n) = Sum_{k=1..n} J_2(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
a(n) = Sum_{1 <= i, j <= n} phi(gcd(i, j, n)). - Peter Bala, Jan 21 2024
Multiplicative with a(p^e) = p^(e-3)*(p-1)*(p^e*(p+1)^2-p). - Amiram Eldar, May 31 2024

A372927 a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^5.

Original entry on oeis.org

1, 35, 251, 1132, 3149, 8785, 16855, 36272, 61065, 110215, 161171, 284132, 371461, 589925, 790399, 1160896, 1420145, 2137275, 2476459, 3564668, 4230605, 5640985, 6436871, 9104272, 9841225, 13001135, 14839443, 19079860, 20511989, 27663965, 28630111, 37149440, 40453921
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e-2) * (p^2 * (p^(3*e+3)-1) - p^(3*e) + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 3));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} gcd(x_1, x_2, x_3, x_4, x_5, n)^2.
a(n) = Sum_{d|n} mu(n/d) * d^2 * sigma_3(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(2*e-2) * (p^2 * (p^(3*e+3)-1) - p^(3*e) + 1)/(p^3-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-5)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(4)/zeta(6) = 21/(2*Pi^2) = 1.0638724... (A088246). (End)

A143309 Triangle read by rows, A054525 * A143308, 1<=k<=n.

Original entry on oeis.org

1, 3, 2, 5, 3, 3, 8, 6, 4, 4, 9, 5, 5, 5, 5, 15, 13, 9, 6, 6, 6, 13, 7, 7, 7, 7, 7, 7, 20, 16, 12, 12, 8, 8, 8, 8, 21, 15, 15, 9, 9, 9, 9, 9, 9, 27, 23, 15, 15, 15, 10, 10, 10, 10, 10, 21, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 40, 36, 32, 26, 18, 18, 12, 12, 12, 12, 12, 12, 25, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Offset: 1

Views

Author

Gary W. Adamson, Aug 06 2008

Keywords

Comments

Row sums = A069097: (1, 5, 11, 22, 29, 55,...).
Left border = A018804: (1, 3, 5, 8, 9, 15,...).

Examples

			First few rows of the triangle =
1;
3, 2;
5, 3, 3;
8, 6, 4, 4;
9, 5, 5, 5, 5;
15, 13, 9, 6, 6, 6;
13, 7, 7, 7, 7, 7, 7;
...
		

Crossrefs

Formula

Mobius transform of triangle A143308.

Extensions

a(56) = 10 removed and more terms from Georg Fischer, Jul 13 2023

A143312 Triangle read by rows, A054525 * A143311, 1<=k<=n.

Original entry on oeis.org

1, 3, 2, 8, 0, 3, 12, 6, 0, 4, 24, 0, 0, 0, 5, 24, 16, 9, 0, 0, 6, 48, 0, 0, 0, 0, 0, 7, 48, 24, 0, 12, 0, 0, 0, 8, 72, 0, 24, 0, 0, 0, 0, 0, 9, 72, 48, 0, 0, 15, 0, 0, 0, 0, 10, 120, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 96, 48, 36, 32, 0, 18, 0, 0, 0, 0, 0, 12, 168, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
Offset: 1

Views

Author

Gary W. Adamson, Aug 06 2008

Keywords

Comments

Left border = A007434.
Row sums = A069097: (1, 5, 11, 2, 29, 55,...)

Examples

			First few rows of the triangle =
1;
3, 2;
8, 0, 3;
12, 6, 0, 4;
24, 0, 0, 0, 5;
24, 16, 9, 0, 0, 6;
48, 0, 0, 0, 0, 0, 7;
48, 24, 0, 12, 0, 0, 0, 8;
...
		

Crossrefs

Formula

Mobius transform of triangle A143311

A304275 a(n) = Sum_{k = 1..n} gcd(k,n) / cos(Pi*k/n)^2 for odd n.

Original entry on oeis.org

1, 11, 29, 55, 105, 131, 181, 319, 305, 379, 605, 551, 745, 963, 869, 991, 1441, 1595, 1405, 1991, 1721, 1891, 3045, 2255, 2737, 3355, 2861, 3799, 4169, 3539, 3781, 5775, 5249, 4555, 6061, 5111, 5401, 8195, 7205, 6319, 8721, 6971, 8845
Offset: 1

Views

Author

Hugo Pfoertner, May 10 2018

Keywords

Crossrefs

Programs

  • Maple
    seq( round( add(igcd(k, 2*n+1)/cos(Pi*k/(2*n+1))^2, k = 1..2*n+1) ), n = 0..40); # Peter Bala, Dec 26 2023
  • Mathematica
    f[p_, e_] := p^(e-1)*(p^e*(p+1)-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[2*n - 1]; Array[a, 50] (* Amiram Eldar, Dec 28 2023 *)
  • PARI
    a(n) = n = 2*n-1; round(sum(k=1, n, gcd(k,n) / cos(Pi*k/n)^2)); \\ Michel Marcus, May 10 2018

Formula

a(n) = A069097(2*n-1). - Peter Bala, Dec 26 2023
a(n) = (1/3)*Sum_{k = 1..4*n-2} (-1)^k*gcd(k,4*n-2)^2. - Conjectured by Peter Bala, Dec 26 2023; proved by Nikolay Osipov, Oct 05 2024
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*Pi^2 / (21*zeta(3)) = 1.563923... . - Amiram Eldar, Dec 28 2023

A351654 Dirichlet g.f.: zeta(s) / (zeta(s-1) * zeta(s-2)).

Original entry on oeis.org

1, -5, -11, 3, -29, 55, -55, 3, 16, 145, -131, -33, -181, 275, 319, 3, -305, -80, -379, -87, 605, 655, -551, -33, 96, 905, 16, -165, -869, -1595, -991, 3, 1441, 1525, 1595, 48, -1405, 1895, 1991, -87, -1721, -3025, -1891, -393, -464, 2755, -2255, -33, 288, -480, 3355, -543, -2861, -80, 3799
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2022

Keywords

Comments

Dirichlet inverse of A069097.

Crossrefs

Programs

  • Mathematica
    A069097[n_] := Sum[GCD[n, k]^2, {k, 1, n}]; a[1] = 1; a[n_] := a[n] = -Sum[A069097[n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 55}]
    f[p_, e_] := If[e == 1, 0, p^3] - p^2 - p + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 25 2025 *)
  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA069097(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d));
    v351654 = DirInverseCorrect(vector(up_to, n, A069097(n)));
    A351654(n) = v351654[n]; \\ Antti Karttunen, Feb 16 2022
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X)*(1 - p^2*X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Feb 16 2022

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A069097(n/d) * a(d).
a(n) = Sum_{d|n} A023900(n/d) * A334657(d).
a(n) = Sum_{d|n} A046970(n/d) * A055615(d).
a(n) = Sum_{d|n} A000005(n/d) * A328254(d).
Multiplicative with a(p) = -p^2 - p + 1, and a(p^e) = p^3 - p^2 - p + 1 for e >= 2. - Amiram Eldar, May 25 2025

A372918 a(n) = Sum_{k=1..n} gcd(k^3,n^2).

Original entry on oeis.org

1, 5, 11, 26, 29, 55, 55, 148, 141, 145, 131, 286, 181, 275, 319, 680, 305, 705, 379, 754, 605, 655, 551, 1628, 1145, 905, 2367, 1430, 869, 1595, 991, 3408, 1441, 1525, 1595, 3666, 1405, 1895, 1991, 4292, 1721, 3025, 1891, 3406, 4089, 2755, 2255, 7480, 4501, 5725, 3355
Offset: 1

Views

Author

Seiichi Manyama, May 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k^3, n^2], {k, 1, n}]; Array[a, 100] (* Amiram Eldar, May 24 2024 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k^3, n^2));

Formula

Multiplicative with a(p^e) = p^e * (1 + ((p-1)/p) * Sum_{i=1..2*e} p^(floor(2*i/3))). - Amiram Eldar, May 24 2024

A332778 a(1) = 1; a(n) = Sum_{d|n, d < n} phi(n/d) * a(d)^2.

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 6, 15, 14, 24, 10, 96, 12, 48, 56, 255, 16, 344, 18, 656, 108, 120, 22, 9840, 84, 168, 434, 2448, 28, 4608, 30, 65535, 260, 288, 264, 137376, 36, 360, 360, 432512, 40, 16776, 42, 14720, 7208, 528, 46, 96974880, 258, 9464, 608, 28656, 52, 425864, 600
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[If[d < n, EulerPhi[n/d] a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    a[1] = 1; a[n_] := Sum[a[GCD[n, k]]^2, {k, 1, n - 1}]; Table[a[n], {n, 1, 55}]

Formula

a(1) = 1; a(n) = Sum_{k=1..n-1} a(gcd(n, k))^2.

A348011 a(n) = phi(n^2) * Sum_{d|n} 2^omega(d) / d.

Original entry on oeis.org

1, 4, 10, 20, 28, 40, 54, 88, 102, 112, 130, 200, 180, 216, 280, 368, 304, 408, 378, 560, 540, 520, 550, 880, 740, 720, 954, 1080, 868, 1120, 990, 1504, 1300, 1216, 1512, 2040, 1404, 1512, 1800, 2464, 1720, 2160, 1890, 2600, 2856, 2200, 2254, 3680, 2730, 2960
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n^2] DivisorSum[n, 2^PrimeNu[#]/# &], {n, 50}]
    f[p_, e_] := p^(e - 1) ((p + 1) p^e - 2); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 50]
  • PARI
    a(n) = eulerphi(n^2)*sumdiv(n, d, 2^omega(d)/d); \\ Michel Marcus, Sep 24 2021

Formula

Multiplicative with a(p^e) = p^(e-1) * ((p + 1) * p^e - 2).
a(n) = Sum_{k=1..n, gcd(n,k) = 1} gcd(n,k-1)^2.
a(n) = Sum_{k=1..n} uphi(gcd(n,k)^2).
a(n) = Sum_{d|n} phi(n/d) * uphi(d^2).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/18) * Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.4083249979... . - Amiram Eldar, Nov 05 2022
Previous Showing 21-29 of 29 results.