cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A239325 a(n) = 6*n^2 + 8*n + 1.

Original entry on oeis.org

1, 15, 41, 79, 129, 191, 265, 351, 449, 559, 681, 815, 961, 1119, 1289, 1471, 1665, 1871, 2089, 2319, 2561, 2815, 3081, 3359, 3649, 3951, 4265, 4591, 4929, 5279, 5641, 6015, 6401, 6799, 7209, 7631, 8065, 8511, 8969, 9439, 9921, 10415, 10921, 11439, 11969
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2014

Keywords

Comments

Binomial transform of 1, 14, 12, 0, 0, 0 (0 continued).
Sum_{n>=0} 1/a(n) = (Psi(0,(4+sqrt(10))/6) - Psi(0,(4-sqrt(10))/6))/(2*sqrt(10)) = 1.14373625509612753878..., where Psi(n,k) is the n^th derivative of the digamma function. - Bruno Berselli, Mar 16 2014

Examples

			a(0) = 1*1 = 1;
a(1) = 1*1 + 14*1 = 15;
a(2) = 1*1 + 14*2 + 12*1 = 41;
a(3) = 1*1 + 14*3 + 12*3 = 79;
a(4) = 1*1 + 14*4 + 12*6 = 129; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[6 n^2 + 8 n + 1, {n, 0, 44}] (* or *)
    CoefficientList[Series[(1 + 12 x - x^2)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Oct 04 2016 *)
    LinearRecurrence[{3,-3,1},{1,15,41},50] (* Harvey P. Dale, May 11 2019 *)
  • PARI
    a(n)=6*n^2+8*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (1 + 12*x - x^2)/(1-x)^3.
a(0) = 1, a(1) = 15, a(2) = 41; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = C(n,0) + 14*C(n,1) + 12*C(n,2).
a(n) = (A069133(n+1) + A100536(n+1) - A000290(n))/2.
a(n) = A139267(n+1) - 1. - Yuriy Sibirmovsky, Oct 04 2016

A239331 Square array, read by antidiagonals: column k has g.f. (1+(k-1)*x)^2/(1-x)^3.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 13, 10, 1, 1, 9, 22, 25, 15, 1, 1, 11, 33, 46, 41, 21, 1, 1, 13, 46, 73, 79, 61, 28, 1, 1, 15, 61, 106, 129, 121, 85, 36, 1, 1, 17, 78, 145, 191, 201, 172, 113, 45, 1, 1, 19, 97, 190, 265, 301, 289, 232, 145, 55, 1, 1, 21
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2014

Keywords

Examples

			Square array begins:
n\k : 0......1......2......3......4......5......6......7......8......9
======================================================================
.0||  1......1......1......1......1......1......1......1......1......1
.1||  1......3......5......7......9.....11.....13.....15.....17.....19
.2||  1......6.....13.....22.....33.....46.....61.....78.....97....118
.3||  1.....10.....25.....46.....73....106....145....190....241....298
.4||  1.....15.....41.....79....129....191....265....351....449....559
.5||  1.....21.....61....121....201....301....421....561....721....901
.6||  1.....28.....85....172....289....436....613....820...1057...1324
.7||  1.....36....113....232....393....596....841...1128...1457...1828
.8||  1.....45....145....301....513....781...1105...1485...1921...2413
.9||  1.....55....181....379....649....991...1405...1891...2449...3079
10||  1.....66....221....466....801...1226...1741...2346...3041...3826
11||  1.....78....265....562....969...1486...2113...2850...3697...4654
		

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k).
T(n,k) = 3*T(n,k-1) - 3*T(n,k-2) + T(n,k-3).
T(n,k) = (T(n,k-1) + T(n,k+1))/2 - A161680(n).
T(n,k) = (T(n-1,k) + T(n+1,k) - A000290(n))/2.

A193518 T(n,k) = number of ways to place any number of 6X1 tiles of k distinguishable colors into an nX1 grid.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 4, 5, 4, 1, 1, 1, 1, 1, 5, 7, 7, 5, 1, 1, 1, 1, 1, 6, 9, 10, 9, 6, 1, 1, 1, 1, 1, 7, 11, 13, 13, 11, 7, 1, 1, 1, 1, 1, 8, 13, 16, 17, 16, 13, 9, 1, 1, 1, 1, 1, 9, 15, 19, 21, 21, 19, 19, 12, 1, 1, 1, 1, 1, 10, 17
Offset: 1

Views

Author

R. H. Hardin, with proof and formula from Robert Israel in the Sequence Fans Mailing List, Jul 29 2011

Keywords

Comments

Table starts:
..1..1...1...1...1...1...1...1...1....1....1....1....1....1....1....1....1....1
..1..1...1...1...1...1...1...1...1....1....1....1....1....1....1....1....1....1
..1..1...1...1...1...1...1...1...1....1....1....1....1....1....1....1....1....1
..1..1...1...1...1...1...1...1...1....1....1....1....1....1....1....1....1....1
..1..1...1...1...1...1...1...1...1....1....1....1....1....1....1....1....1....1
..2..3...4...5...6...7...8...9..10...11...12...13...14...15...16...17...18...19
..3..5...7...9..11..13..15..17..19...21...23...25...27...29...31...33...35...37
..4..7..10..13..16..19..22..25..28...31...34...37...40...43...46...49...52...55
..5..9..13..17..21..25..29..33..37...41...45...49...53...57...61...65...69...73
..6.11..16..21..26..31..36..41..46...51...56...61...66...71...76...81...86...91
..7.13..19..25..31..37..43..49..55...61...67...73...79...85...91...97..103..109
..9.19..31..45..61..79..99.121.145..171..199..229..261..295..331..369..409..451
.12.29..52..81.116.157.204.257.316..381..452..529..612..701..796..897.1004.1117
.16.43..82.133.196.271.358.457.568..691..826..973.1132.1303.1486.1681.1888.2107
.21.61.121.201.301.421.561.721.901.1101.1321.1561.1821.2101.2401.2721.3061.3421

Examples

			Some solutions for n=13 k=3; colors=1, 2, 3; empty=0
..0....0....0....0....0....3....0....0....0....0....2....0....0....2....2....1
..3....0....1....2....1....3....0....0....0....2....2....0....0....2....2....1
..3....0....1....2....1....3....0....0....0....2....2....0....0....2....2....1
..3....0....1....2....1....3....0....0....0....2....2....2....0....2....2....1
..3....0....1....2....1....3....0....0....3....2....2....2....0....2....2....1
..3....1....1....2....1....3....0....0....3....2....2....2....0....2....2....1
..3....1....1....2....1....0....3....0....3....2....3....2....0....0....0....2
..1....1....1....0....0....1....3....3....3....3....3....2....2....2....0....2
..1....1....1....0....0....1....3....3....3....3....3....2....2....2....0....2
..1....1....1....0....0....1....3....3....3....3....3....0....2....2....0....2
..1....1....1....0....0....1....3....3....0....3....3....0....2....2....0....2
..1....0....1....0....0....1....3....3....0....3....3....0....2....2....0....2
..1....0....1....0....0....1....0....3....0....3....0....0....2....2....0....0
		

Crossrefs

Column 1 is A005708,
Column 2 is A143448(n-5),
Column 3 is A143456(n-5),
Row 12 is A190576(n+1),
Row 15 is A069133(n+1).

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n<0, 0,
          `if`(n<6 or k=0, 1, k*T(n-6, k) +T(n-1, k)))
        end:
    seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    T[n_, k_] := T[n, k] = If[n<0, 0, If[n < 6 || k == 0, 1, k*T[n-6, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. So T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n=0,1,...,z-1. The solution is T(n,k) = sum_r r^(-n-1)/(1 + z k r^(z-1)) where the sum is over the roots of the polynomial k x^z + x - 1.
T(n,k) = sum {s=0..[n/6]} (binomial(n-5*s,s)*k^s).
For z X 1 tiles, T(n,k,z) = sum{s=0..[n/z]} (binomial(n-(z-1)*s,s)*k^s). - R. H. Hardin, Jul 31 2011

A264845 Centered 20-gonal (or icosagonal) primes.

Original entry on oeis.org

61, 421, 1321, 3061, 4201, 4621, 5521, 7561, 12601, 14821, 15601, 18061, 19801, 28621, 35401, 42901, 44221, 52561, 55501, 74821, 76561, 81901, 87421, 97021, 109201, 111301, 115561, 117721, 131101, 135721, 150061, 189061, 217561, 235621, 251221, 270601, 273901
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2015

Keywords

Comments

Primes of the form 10*k^2 - 10*k + 1.

Crossrefs

Programs

  • Mathematica
    Select[Table[10 n^2 - 10 n + 1, {n, 200}], PrimeQ] (* Vincenzo Librandi, Nov 27 2015 *)
  • PARI
    for(n=1, 1e3, if(isprime(k=10*n^2-10*n+1), print1(k, ", "))) \\ Altug Alkan, Nov 26 2015
Previous Showing 11-14 of 14 results.