cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A290307 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)/(1 + x^(k*j)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 0, 1, 1, 1, 2, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 2, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 2, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 3, 2, 0, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 4, 2, 0, 1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 5, 3, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 26 2017

Keywords

Comments

A(n,k) is the number of partitions of n into distinct parts where no part is a multiple of k.

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1, ...
  0,  1,  1,  1,  1,  1, ...
  0,  0,  1,  1,  1,  1, ...
  0,  1,  1,  2,  2,  2, ...
  0,  1,  1,  1,  2,  2, ...
  0,  1,  2,  2,  2,  3, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^i)/(1 + x^(i k)), {i, Infinity}], {x, 0, n}]][j - n + 1], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[-1, x]/QPochhammer[-1, x^k], {x, 0, n}]][j - n + 1], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 + x^j)/(1 + x^(k*j)).
For asymptotics of column k see comment from Vaclav Kotesovec in A261772.

A301507 Expansion of Product_{k>=0} (1 + x^(4*k+1))*(1 + x^(4*k+2)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 8, 9, 10, 11, 13, 14, 14, 16, 18, 20, 23, 24, 27, 30, 31, 34, 37, 41, 46, 49, 53, 58, 62, 67, 73, 80, 88, 94, 101, 109, 117, 127, 136, 147, 161, 172, 184, 198, 211, 228, 245, 262, 284, 304, 324, 347, 370, 397, 425, 454, 488
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 or 2 mod 4.

Examples

			a(11) = 3 because we have [10, 1], [9, 2] and [6, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k + 1)) (1 + x^(4 k + 2)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[QPochhammer[-x, x^4] QPochhammer[-x^2, x^4], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{1, 2}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A042963(k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(3/2)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 23 2018

A301508 Expansion of Product_{k>=0} (1 + x^(4*k+2))*(1 + x^(4*k+3)).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 4, 4, 5, 5, 6, 7, 6, 8, 9, 9, 11, 12, 13, 14, 15, 17, 19, 20, 23, 25, 27, 29, 31, 35, 37, 40, 46, 48, 52, 57, 60, 66, 71, 76, 85, 90, 97, 105, 112, 121, 129, 140, 152, 161, 174, 187, 198, 214, 228, 245, 265, 280, 302, 323, 342
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 2 or 3 mod 4.

Examples

			a(13) = 3 because we have [11, 2], [10, 3] and [7, 6].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k + 2)) (1 + x^(4 k + 3)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[QPochhammer[-x^2, x^4] QPochhammer[-x^3, x^4], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{2, 3}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A042964(k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 23 2018

A304628 a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 + x^(4*k)))^n.

Original entry on oeis.org

1, 1, 3, 13, 47, 181, 729, 2948, 12031, 49540, 205153, 853546, 3565505, 14943839, 62810786, 264650683, 1117486463, 4727486583, 20032950744, 85017558081, 361289789377, 1537198394570, 6547611493822, 27917246924099, 119141276756545, 508884954441331, 2175284934712217, 9305217981192748
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(4 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]
    Table[SeriesCoefficient[Product[((1 - x^(8 k - 4))/(1 - x^(2 k - 1)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]
    (* Calculation of constants {d,c}: *) With[{k = 4}, {1/r, Sqrt[QPochhammer[-1, (r*s)^k] / (2*Pi*(r^2*s*Derivative[0, 2][QPochhammer][-1, r*s] - k^2*(r*s)^(2*k) * Derivative[0, 2][QPochhammer][-1, (r*s)^k] - k*(1 + k)*(r*s)^k * Derivative[0, 1][QPochhammer][-1, (r*s)^k]))]} /. FindRoot[{s == QPochhammer[-1, r*s]/QPochhammer[-1, (r*s)^k], QPochhammer[-1, (r*s)^k] + k*(r*s)^k*Derivative[0, 1][QPochhammer][-1, (r*s)^k] == r*Derivative[0, 1][QPochhammer][-1, r*s]}, {r, 1/4}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} ((1 - x^(8*k-4))/(1 - x^(2*k-1)))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.3582188263213968630940316689... and c = 0.266443662680498334500839... - Vaclav Kotesovec, May 18 2018

A332310 Number of compositions (ordered partitions) of n into distinct parts where no part is a multiple of 4.

Original entry on oeis.org

1, 1, 1, 3, 2, 3, 9, 5, 12, 17, 23, 43, 50, 55, 67, 111, 144, 273, 291, 377, 410, 689, 827, 961, 1860, 1663, 2647, 3573, 4610, 4683, 6753, 8465, 11232, 16835, 19985, 24073, 29258, 40411, 51367, 58431, 72084, 99807, 119409, 176387, 199922, 250841, 290123
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 09 2020

Keywords

Examples

			a(7) = 5 because we have [7], [6, 1], [5, 2], [2, 5] and [1, 6].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Feb 09 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0, p!, Sum[b[n - i j, i - 1, p + j], {j, 0, Min[Mod[i, 4], 1, n/i]}]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 55] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

A116498 Expansion of psi(-q)/psi(-q^2) in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -2, 1, -2, 3, -3, 4, -5, 6, -7, 8, -9, 11, -13, 16, -18, 21, -24, 27, -32, 36, -41, 48, -54, 61, -70, 78, -88, 100, -112, 127, -143, 159, -179, 199, -222, 248, -276, 308, -342, 380, -421, 465, -516, 570, -629, 697, -767, 845, -932, 1022, -1124, 1236, -1355, 1488, -1631, 1785, -1954, 2136
Offset: 0

Views

Author

Michael Somos, Feb 18 2006

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[ q^(1/8)* eta[q]*eta[q^4]^2/(eta[q^2]^2*eta[q^8]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 07 2018 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^4+A)^2/eta(x^2+A)^2/eta(x^8+A), n))}

Formula

Expansion of q^(1/8)*eta(q)*eta(q^4)^2/(eta(q^2)^2*eta(q^8)) in powers of q.
a(n)=(-1)^n*A070048(n).
Euler transform of period 8 sequence [ -1,1,-1,-1,-1,1,-1,0,...].
Given g.f. A(x), then B(x)=A(x^8)/x satisfies 0=f(B(x),B(x^3)) where f(u,v)=3*u*v -(u+v^3)*(v-u^3).
G.f.: Product_{k>0} (1+x^(2k))/((1+x^k)(1+x^(4k))) = (Sum_{k>0} (-x)^((k^2-k)/2))/(Sum_{k>0} (-x^2)^((k^2-k)/2)).
Previous Showing 11-16 of 16 results.