cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A176070 Numbers of the form k^3+k^2+k+1 that are the product of two distinct primes.

Original entry on oeis.org

15, 85, 259, 1111, 4369, 47989, 65641, 291919, 2016379, 2214031, 3397651, 3820909, 5864581, 9305311, 13881841, 15687751, 16843009, 19756171, 22030681, 28746559, 62256349, 64160401, 74264821, 79692331, 101412319, 117889591, 172189309, 185518471, 191435329, 270004099, 328985791
Offset: 1

Views

Author

Keywords

Comments

As k^3 + k^2 + k + 1 = (k + 1) * (k^2 + 1) and k <= 1 does not give a term, k + 1 and k^2 + 1 must be prime so k must be even. - David A. Corneth, May 30 2023

Examples

			15 is in the sequence as 15 = 3*5 = 2^3+2^2+2+1; 15 is a product of two distinct primes and of the form k^3 + k^2 + k + 1.
		

Crossrefs

Cf. A002496, A006093, A006881, A053698, A070689, A174969, A176069, A237627 (semiprimes of that form).

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1};Select[Array[ #^3+#^2+#+1&,7! ],f[ # ]&]
  • PARI
    upto(n) = {my(res = List(), u = sqrtnint(n, 3) + 1); forprime(p = 3, u, c = (p-1)^2 + 1; if(isprime(c), listput(res, c*p))); res} \\ David A. Corneth, May 30 2023

Formula

a(n) = (A070689(n + 1) + 1) * (A070689(n + 1)^2 + 1). - David A. Corneth, May 30 2023

Extensions

Name corrected by and more terms from David A. Corneth, May 30 2023

A279480 Numbers n such that n+1 and n^4+1 are primes.

Original entry on oeis.org

1, 2, 4, 6, 16, 28, 46, 82, 88, 106, 180, 198, 210, 228, 238, 276, 312, 352, 430, 442, 466, 498, 540, 556, 568, 600, 616, 690, 732, 738, 742, 760, 768, 772, 786, 810, 856, 928, 936, 952, 966, 996, 1038, 1150, 1152
Offset: 1

Views

Author

Ely Golden, Dec 12 2016

Keywords

Comments

For any n > 1 in this sequence, (n+1)*(n^4+1) has the same nonzero digits as its prime factors in base n. - Ely Golden, Dec 12 2016

Crossrefs

Cf. A070689 (the similar sequence for n+1 and n^2+1)

Programs

  • Mathematica
    Select[Range@ 2000, Times @@ Boole@ Map[PrimeQ, {# + 1, #^4 + 1}] == 1 &] (* Michael De Vlieger, Dec 13 2016 *)
    Select[Range[2000],AllTrue[1+{#,#^4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 13 2019 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim+1, if(isprime(1+(p-1)^4), listput(v, p-1))); Vec(v) \\ Charles R Greathouse IV, Dec 13 2016
  • SageMath
    c=1
    index=1
    while(index<=1000):
        if((is_prime(c+1))&(is_prime(c**4+1))):
            print(str(index)+" "+str(c))
            index+=1
        c+=1
    print("complete")
    

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 13 2016

A285390 Numbers n such that n + 2, n^2 + 2^2, n^4 + 2^4, n^8 + 2^8 and n^16 + 2^16 are primes.

Original entry on oeis.org

1, 1938357, 12543605, 42052067, 42916485, 48724977, 89483837, 94041095, 94101375, 129136065, 138460937, 145198547, 153488937, 172741167, 182885915, 215999297, 217054557, 217734965, 249913685, 271516605, 277401597, 285433077, 295266797, 306256175
Offset: 1

Views

Author

Zak Seidov, Apr 18 2017

Keywords

Comments

Are there any n such that n^32 + 2^32 is also prime?
a(87) = 2321204055 and a(156) = 5231769977 are the first 2 terms such that n^32 + 2^32 is prime. - Chai Wah Wu, Sep 03 2020

Crossrefs

Subsequence of A192794. Cf. A070689.

A102368 Smallest k>0 such that n^k + 1 is not prime.

Original entry on oeis.org

3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2
Offset: 2

Views

Author

Reinhard Zumkeller, Feb 22 2005

Keywords

Comments

a(odd) = 1.
Since n + 1 divides n^3 + 1, a(n) <= 3. - Robert Israel, Jun 15 2014

Examples

			n=10: 10^1+1=11=A000040(5), 10^2+1=101=A000040(26), but 10^3+1=1001=7*11*13, therefore a(10)=3.
		

Crossrefs

Cf. A070689: a(n) = 3.

Programs

  • Maple
    A102368:= proc(n)
      if n::odd or not isprime(n+1) then 1
        elif isprime(n^2+1) then 3 else 2
      fi
    end proc; # Robert Israel, Jun 15 2014
  • Mathematica
    sk[n_]:=Module[{k=1},While[PrimeQ[n^k+1],k++];k]; Array[sk,110,2] (* Harvey P. Dale, Apr 09 2016 *)

A236692 Numbers k such that k+1, 2*k+1 and k^2+1 are primes.

Original entry on oeis.org

1, 2, 6, 36, 156, 210, 270, 306, 576, 690, 936, 966, 2136, 2310, 2550, 2706, 2850, 3390, 3966, 4026, 4176, 4260, 4566, 4590, 5226, 5430, 5850, 6120, 6216, 6360, 6420, 6546, 7410, 7536, 8940, 9126, 9240, 9276, 9900, 10530, 10836, 11286, 11586, 11886, 12390, 13680
Offset: 1

Views

Author

Alex Ratushnyak, Jan 30 2014

Keywords

Comments

Intersection of A070689 and {b(n)=A005382(n)-1}.

Crossrefs

Programs

  • Mathematica
    Select[Range[14000],AllTrue[{#+1,2#+1,#^2+1},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 27 2019 *)
  • PARI
    isok(n) = isprime(n+1)&&isprime(2*n+1)&&isprime(n^2+1); \\ Colin Barker, Jan 30 2014
  • Python
    import sympy
    from sympy import isprime
    for n in range(100000):
        if isprime(n+1) and isprime(n*2+1) and isprime(n*n+1): print(n, end=', ')
    

A237191 Numbers k such that k+1, k+3, k^2+1, k^2+3, k^4+1, k^4+3 are six primes.

Original entry on oeis.org

2, 520360, 14320216, 30527896, 119668186, 120506050, 131448430, 142493926, 211158676, 254574706, 276368680, 306216940, 315122416, 421132180, 472731400, 506213890, 540271396, 616078786, 629310346, 646308250, 741176296, 752897860, 800587480, 851425030, 897745996
Offset: 1

Views

Author

Alex Ratushnyak, Feb 04 2014

Keywords

Crossrefs

A subsequence of A067662, A070325, A070689, A080149.

Programs

  • Python
    from sympy import isprime
    for n in range(0,1000000000,2):
        if isprime(n+1) and isprime(n*n+1) and isprime(n**4+1):
            if isprime(n+3) and isprime(n*n+3) and isprime(n**4+3):
                print(n, end=', ')

A188698 Numbers k such that 1+k, 1+k^2, 1+k^4 and 1+k^16 are all prime.

Original entry on oeis.org

1, 2, 690, 33190, 57106, 77140, 135606, 258990, 303430, 331140, 337536, 359230, 375646, 455526, 458326, 493396, 548226, 550540, 585106, 602056, 659250, 680830, 742306, 800406, 827680, 870240, 918340, 925390, 968320, 1203100, 1273890, 1455526, 1497576, 1605016
Offset: 1

Views

Author

Zak Seidov, Apr 09 2011

Keywords

Comments

Subsequence of A070325, which itself is a subsequence of A070689, which itself is a subsequence of A006093.

Examples

			a(3) = 690 = A070689(32) = A070325(11) = A006093(125).
		

Programs

  • Magma
    [n: n in [0..7000000]| IsPrime(1+n) and IsPrime(1+n^2) and IsPrime(1+n^4) and IsPrime(1+n^16)]; // Vincenzo Librandi, Apr 11 2011

Extensions

a(1) = 1 prepended by Vincenzo Librandi, Apr 11 2011

A193266 Numbers k such that k + 3 and k^2 + 9 are both prime.

Original entry on oeis.org

2, 8, 10, 20, 38, 40, 58, 70, 98, 100, 110, 160, 170, 188, 190, 220, 308, 350, 380, 538, 568, 598, 628, 640, 680, 688, 698, 740, 748, 818, 850, 968, 1010, 1028, 1048, 1088, 1190, 1228, 1300, 1378, 1420, 1430, 1448, 1528, 1540, 1550, 1568, 1580, 1730, 1738
Offset: 1

Views

Author

Zak Seidov, Dec 19 2012

Keywords

Examples

			2 is in the sequence since 2 + 3 = 5 and 2^2 + 9 = 13 are both prime;
8 is in the sequence since 8 + 3 = 11 and 8^2 + 9 = 73 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3,300]]-3,PrimeQ[#^2+9]&] (* Harvey P. Dale, Nov 11 2014 *)
  • PARI
    {a=3;forstep(n=2,2000,2,if(isprime(n+a)&&isprime(n^2+a^2),print1(n",")))}
Previous Showing 11-18 of 18 results.