cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A247844 Decimal expansion of the value of the continued fraction [1; 1, 2, 3, 4, 5, ...].

Original entry on oeis.org

1, 6, 9, 7, 7, 7, 4, 6, 5, 7, 9, 6, 4, 0, 0, 7, 9, 8, 2, 0, 0, 6, 7, 9, 0, 5, 9, 2, 5, 5, 1, 7, 5, 2, 5, 9, 9, 4, 8, 6, 6, 5, 8, 2, 6, 2, 9, 9, 8, 0, 2, 1, 2, 3, 2, 3, 6, 8, 6, 3, 0, 0, 8, 2, 8, 1, 6, 5, 3, 0, 8, 5, 2, 7, 6, 4, 6, 4, 1, 1, 1, 2, 9, 9, 6, 9, 6, 5, 6, 5, 4, 1, 8, 2, 6, 7, 6, 5, 6, 8, 7, 2, 3, 9, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Comments

Equals 1+A052119.

Examples

			1.697774657964007982006790592551752599486658262998...
		

Crossrefs

Programs

  • Mathematica
    FromContinuedFraction[Join[{1}, Range[50]]] // RealDigits[#, 10, 105]& // First
    (* or *) 1+BesselI[1, 2]/BesselI[0, 2] // RealDigits[#, 10, 105]& // First
  • PARI
    1+besseli(1,2)/besseli(0,2) \\ Charles R Greathouse IV, Oct 23 2023

Formula

1 + I_1(2) / I_0(2), where I_n(x) gives the modified Bessel function of the first kind.

A261879 Decimal expansion of BesselI(3,2).

Original entry on oeis.org

2, 1, 2, 7, 3, 9, 9, 5, 9, 2, 3, 9, 8, 5, 2, 6, 5, 5, 2, 7, 2, 3, 5, 4, 3, 9, 3, 3, 7, 5, 9, 3, 2, 0, 3, 7, 2, 9, 1, 7, 5, 2, 2, 7, 2, 9, 1, 5, 6, 9, 1, 8, 3, 3, 2, 5, 5, 1, 8, 4, 4, 5, 0, 4, 9, 7, 0, 2, 4, 4, 2, 6, 1, 4, 0, 7, 3, 0, 8, 6, 9, 8, 8, 9, 3, 3, 2, 2, 6, 5, 6, 6, 9, 7, 1, 4, 9, 7, 7, 7, 4, 4, 0, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Nov 19 2015

Keywords

Examples

			0.212739959239852655272354393375932037291752272915691833255184450497...
		

Crossrefs

Cf. A070910 (BesselI(0,2)), A096789 (BesselI(1,2)), A229020 (BesselI(2,2)).

Programs

  • Mathematica
    RealDigits[BesselI[3, 2], 10, 105][[1]]
  • PARI
    besseli(3,2) \\ Altug Alkan, Nov 19 2015

Formula

Sum_{k>=1} 1/((k - 2)!*(k + 1)!).
Also S(2) - S(1), using Peter Bala's notation in A229020.

A334379 Decimal expansion of Sum_{k>=0} 1/((2*k)!)^2.

Original entry on oeis.org

1, 2, 5, 1, 7, 3, 8, 0, 4, 0, 7, 3, 8, 6, 5, 1, 4, 6, 7, 7, 4, 4, 5, 1, 5, 9, 4, 7, 7, 3, 0, 7, 4, 0, 9, 8, 9, 5, 5, 5, 4, 9, 7, 7, 9, 2, 5, 0, 2, 0, 3, 3, 3, 2, 8, 5, 9, 9, 5, 9, 4, 7, 2, 8, 8, 3, 7, 5, 7, 9, 6, 5, 0, 5, 0, 0, 3, 4, 3, 5, 2, 3, 8, 7, 2, 1, 6, 4, 3, 0, 0, 2, 0, 4, 9, 5, 7, 6, 3, 2, 5, 1, 6, 9, 1, 6, 2, 8, 2, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/0!^2 + 1/2!^2 + 1/4!^2 + 1/6!^2 + ... = 1.25173804073865146774451594773...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 2] + BesselJ[0, 2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/((2*k)!)^2) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    (besseli(0,2) + besselj(0,2))/2 \\ Michel Marcus, Apr 26 2020

Formula

Equals (BesselI(0,2) + BesselJ(0,2))/2.
Continued fraction: 1 + 1/(4 - 4/(145 - 144/(901 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (2*n*(2*n - 1))^2. - Peter Bala, Feb 22 2024

A348607 Decimal expansion of BesselJ(1,2).

Original entry on oeis.org

5, 7, 6, 7, 2, 4, 8, 0, 7, 7, 5, 6, 8, 7, 3, 3, 8, 7, 2, 0, 2, 4, 4, 8, 2, 4, 2, 2, 6, 9, 1, 3, 7, 0, 8, 6, 9, 2, 0, 3, 0, 2, 6, 8, 9, 7, 1, 9, 6, 7, 5, 4, 4, 0, 1, 2, 1, 1, 3, 9, 0, 2, 0, 7, 6, 4, 0, 8, 7, 1, 1, 6, 2, 8, 9, 6, 1, 2, 1, 8, 4, 9, 4, 8, 3, 9, 9
Offset: 0

Views

Author

Dumitru Damian, Oct 25 2021

Keywords

Examples

			0.5767248077568733872...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A091681 (J(0,2)), A334383 (J(0,sqrt(2))), this sequence (J(1,2)), A197036 (I(0,1)), A070910 (I(0,2)), A334381 (I(0,sqrt(2))), A096789 (I(1,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[1, 2], 10, 100][[1]] (* Amiram Eldar, Oct 25 2021 *)
  • PARI
    besselj(1, 2) \\ Michel Marcus, Oct 25 2021
  • Sage
    bessel_J(1, 2).n(digits=100)
    

Formula

Equals Sum_{k>=0} (-1)^k/(k!*(k+1)!).

A363679 Decimal expansion of the sum of the reciprocals of triangular polygorials A006472.

Original entry on oeis.org

2, 3, 9, 4, 8, 3, 3, 0, 9, 9, 2, 7, 3, 4, 0, 4, 7, 1, 6, 5, 2, 2, 6, 3, 2, 6, 3, 6, 4, 3, 6, 3, 7, 3, 1, 5, 1, 9, 6, 8, 6, 3, 7, 0, 0, 7, 0, 9, 1, 3, 6, 2, 4, 4, 4, 7, 2, 6, 7, 9, 7, 5, 6, 3, 8, 5, 7, 2, 9, 5, 5, 5, 9, 4, 8, 3, 3, 3, 3, 4, 6, 4, 0, 5, 2, 4, 5, 5, 9, 4, 9, 9, 7, 1, 2, 3, 1, 5, 0, 7, 8, 9, 2, 5, 2, 2, 3, 6, 9, 3, 1, 1, 0, 3, 7, 8, 4, 9, 6, 1
Offset: 1

Views

Author

Kelvin Voskuijl, Aug 17 2023

Keywords

Examples

			2.3948330992734047165226326364363731519686370070913624447267975638...
		

Crossrefs

Cf. A001113 (of factorials), A070910 (of factorials squared).
Cf. A365077 (continued fraction).
Cf. A006472.

Programs

  • Mathematica
    RealDigits[BesselI[1, 2 Sqrt[2]]/Sqrt[2] 10, 120][[1]]

Formula

Equals BesselI(1, 2*sqrt(2))/sqrt(2).

A141827 a(n) = (n^3*a(n-1) - 1)/(n - 1) for n >= 2, with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 31, 418, 8917, 278656, 12037939, 688168846, 50334635593, 4586743668412, 509638185379111, 67832842473959674, 10655922890454756061, 1950921882527424922168, 411794588127327229725307, 99271909637837814308779366, 27107849458438912493917352209
Offset: 0

Views

Author

Peter Bala, Jul 09 2008, Oct 06 2008

Keywords

Comments

For related recurrences of the form a(n) = (n^k*a(n-1)-1)/(n-1) see A001339, A007808 (both k = 2) and A141828 (k = 4). a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.
From Peter Bala, Jul 02 2016: (Start)
For k = 1,2,3,... and x in Z, the recurrence equation a(n) = (n^k*a(n-1) - 1)/(n - 1) with starting value a(1) = x produces an integer sequence. This is because the sequence also satisfies the second-order recurrence a(n) = (1 + (n^k - 1)/(n - 1))*a(n-1) - (n - 1)^(k-1)*a(n-2) with integer starting values a(1) = x, a(2) = x*2^k - 1. Here we take k = 3 and x = 4.
The solution to the recurrence is a(n) = n*n!^(k-1)*( x - Sum_{i = 2..n} 1/(i*(i-1)*i!^(k-1)) ). Hence limit (n -> inf) a(n)/(n*n!^(k-1)) equals the constant x - Sum_{i = 2..inf} 1/(i*(i-1)*i!^(k-1)). Note that the sequence b(n) := n*n!^(k-1) satisfies the same second-order recurrence but with starting values b(1) = 1, b(2) = 2^k. From this observation one can get a generalized continued fraction expansion for a(n)/b(n) and hence, by going to the limit, for the constant x - Sum_{i = 2..n} 1/(i*(i-1)*i!^(k-1)). See, for example, A130820. (End)

Crossrefs

Programs

  • Maple
    a(n) := n -> n!^2*sum((n-k+1)*(k+1)/k!^2, k = 0..n): seq(a(n), n = 0..16);
  • Mathematica
    a[0] = 1; a[1] = 4; a[n_] := a[n] = (n^3 a[n - 1] - 1)/(n - 1); Table[a@ n, {n, 0, 14}] (* or *)
    Table[n!^2 Sum[(n - k + 1) (k + 1)/k!^2, {k, 0, n}], {n, 0, 14}] (* or *)
    Table[n n!^2 (4 - Sum[ 1/(k!^2*k*(k - 1)), {k, 2, n}]), {n, 0, 14}] /. 0 -> 1 (* Michael De Vlieger, Jul 03 2016 *)

Formula

Sum_{n = 0..inf} a(n)*x^n/n!^2 = 1/(1 - x)^2*Sum_{n = 0..inf} (n + 1)*x^n/n!^2.
a(n) = n!^2*Sum_{k = 0..n} (n - k + 1)(k + 1)/k!^2.
a(n) = n*n!^2*(4 - Sum_{k = 2..n} 1/(k!^2*k*(k - 1))).
Congruence property: a(n) == (1 + n + n^2) (mod n^3).
The recurrence a(n) = (n^2 + n + 2)*a(n-1) - (n - 1)^2*a(n-2), n >= 2, shows that a(n) is always a positive integer. The sequence b(n) := n*n!^2 also satisfies the same recurrence with b(0) = 0, b(1) = 1. Hence we obtain the finite continued fraction expansion a(n)/(n*n!^2) = 4 - 1^2/(8 - 2^2/(14 - 3^2/(22 -...-(n - 1)^2/(n^2 + n + 2)))), for n > 1. a(n)*b(n+1) - b(n)*a(n+1) = n!^2.
Limit_{n -> infinity} a(n)/(n*n!^2) = Sum_{n = 0..inf} (n + 1)/n!^2 = BesselI(0,2) + BesselI(1,2) = 3.87022 21569 ..., using the values of the modified Bessel function, BesselI(0, 2) = 2.27958 53023 ... and BesselI(1, 2) = 1.59063 68546 ... (see A070910 and A096789; Cf. A130820). This yields the continued fraction expansion BesselI(0,2) + BesselI(1,2) = 4 - 1^2/(8 - 2^2/(14 - 3^2/(22 -...-(n - 1)^2/(n^2 + n + 2 - ... )))).
Limit_{n -> infinity} a(n)/(n*n!^2) = Sum_{n = 1..inf} (n + n^2)/n!^2 = Sum_{n = 1..inf} n^3/n!^2 = 1/2 * Sum_{n = 1..inf} n^4/n!^2.
Limit_{n -> infinity} a(n)/(n*n!^2) = Sum_{n = 0..inf} A001405 (n)/n!.
Limit_{n -> infinity} a(n)/(n*n!^2) = 1 + Sum_{n = 0..inf} 1/(Product_{k = 0..n} A008619(k)).

Extensions

a(15)-a(16) from Jason Yuen, Jan 31 2025

A328378 Number of permutations of length n that possess the maximal sum of distances between contiguous elements.

Original entry on oeis.org

1, 1, 2, 4, 2, 8, 8, 48, 72, 576, 1152, 11520, 28800, 345600, 1036800, 14515200, 50803200, 812851200, 3251404800, 58525286400, 263363788800, 5267275776000, 26336378880000, 579400335360000, 3186701844480000, 76480844267520000, 458885065605120000, 11931011705733120000
Offset: 0

Views

Author

Tomás Roca Sánchez, Oct 14 2019

Keywords

Comments

From Andrew Howroyd, Oct 16 2019: (Start)
No permutation with maximal sum of distances between contiguous elements can contain three contiguous elements a, b, c such that a < b < c or a > b > c. Otherwise removing b will not alter the sum and then appending b to the end of the permutation will increase it so that the original permutation could not have been maximal. In this sense all solution permutations are alternating.
For odd n consider an alternating permutation of the form p_1 p_2 ... p_n with p_1 > p2, p_2 < p_3, etc. The sum of distances is given by (p_1 + 2*p_3 + 2*p_5 + ... 2*p_{n-2} + p_n) - 2*(p_2 + p_4 + ... p_{n-1}). This is maximized by choosing the central odd p_i to be as highest possible and the even p_i to be least possible but other than that the order does not alter the sum. Similar arguments can be made for p_1 < p_2 and for the case when n is even.
The above considerations lead to a formula for this sequence with the maximum sum being given by A047838(n). (End)

Examples

			(1,3,2) is a permutation of length 3 with distance sum |1-3| + |3-2| = 2 + 1 = 3. For n = 3, the 4 permutations with maximum sum of distances are (1,3,2), (2,1,3), (2,3,1) and (3,1,2).
		

Crossrefs

Cf. A047838 is the maximum distance for every length n, except for n = 0 and n = 1.

Programs

  • Mathematica
    A328378[n_]:=If[n<2,1,2(Floor[n/2]-1)!^2If[Divisible[n,2],1,n-1]];Array[A328378,30,0] (* Paolo Xausa, Aug 13 2023 *)
  • PARI
    a(n)={if(n<2, n>=0, 2*(n\2-1)!^2*if(n%2, n-1, 1))} \\ Andrew Howroyd, Oct 16 2019
  • Python
    # See Github link
    

Formula

a(2*n) = 2*(n-1)!^2 for n > 0; a(2*n+1) = 4*n!*(n-1)! for n > 0. - Andrew Howroyd, Oct 16 2019
D-finite with recurrence: - (12*n-20)*a(n) + 4*a(n-1) + (3*n-2)*(n-3)*(n-2)*a(n-2) = 0. - Georg Fischer, Nov 25 2022
Sum_{n>=0} 1/a(n) = BesselI(0, 2)/2 + BesselI(1, 2)/4 + 2 = A070910/2 + A096789/4 + 2. - Amiram Eldar, Oct 03 2023

Extensions

Terms a(12) and beyond from Andrew Howroyd, Oct 16 2019

A334378 Decimal expansion of Sum_{k>=0} 1/((2*k+1)!)^2.

Original entry on oeis.org

1, 0, 2, 7, 8, 4, 7, 2, 6, 1, 5, 9, 7, 4, 1, 5, 7, 9, 9, 6, 9, 2, 6, 8, 8, 4, 9, 3, 0, 8, 0, 7, 9, 2, 3, 6, 3, 7, 3, 0, 3, 4, 3, 3, 1, 0, 2, 8, 3, 4, 2, 5, 7, 2, 5, 4, 7, 1, 2, 4, 5, 0, 2, 2, 8, 2, 6, 7, 2, 5, 6, 9, 2, 7, 3, 2, 3, 3, 2, 8, 1, 8, 8, 5, 7, 3, 5, 2, 7, 8, 8, 3, 5, 1, 5, 2, 8, 2, 6, 6, 4, 6, 7, 6, 7, 9, 2, 3, 7, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/1!^2 + 1/3!^2 + 1/5!^2 + 1/7!^2 + ... = 1.027847261597415799692...
Continued fraction: 1 + 1/(36 - 36/(401 - 400/(1765 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (2*n*(2*n + 1))^2 for n >= 1. - _Peter Bala_, Feb 22 2024
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 2] - BesselJ[0, 2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/((2*k+1)!)^2) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    (besseli(0,2) - besselj(0,2))/2 \\ Michel Marcus, Apr 26 2020

Formula

Equals (BesselI(0,2) - BesselJ(0,2))/2.

A354302 a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.

Original entry on oeis.org

1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
    nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator

Formula

Numerators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).

A354303 a(n) is the denominator of Sum_{k=0..n} 1 / (k!)^2.

Original entry on oeis.org

1, 1, 4, 18, 576, 2400, 518400, 12700800, 541900800, 65840947200, 13168189440000, 88519495680000, 229442532802560000, 19387894021816320000, 2533351485517332480000, 855006126362099712000000, 437763136697395052544000000, 1621968544942912438272000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Denominator
    nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator

Formula

Denominators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).
Previous Showing 21-30 of 39 results. Next