A247844 Decimal expansion of the value of the continued fraction [1; 1, 2, 3, 4, 5, ...].
1, 6, 9, 7, 7, 7, 4, 6, 5, 7, 9, 6, 4, 0, 0, 7, 9, 8, 2, 0, 0, 6, 7, 9, 0, 5, 9, 2, 5, 5, 1, 7, 5, 2, 5, 9, 9, 4, 8, 6, 6, 5, 8, 2, 6, 2, 9, 9, 8, 0, 2, 1, 2, 3, 2, 3, 6, 8, 6, 3, 0, 0, 8, 2, 8, 1, 6, 5, 3, 0, 8, 5, 2, 7, 6, 4, 6, 4, 1, 1, 1, 2, 9, 9, 6, 9, 6, 5, 6, 5, 4, 1, 8, 2, 6, 7, 6, 5, 6, 8, 7, 2, 3, 9, 8
Offset: 1
Examples
1.697774657964007982006790592551752599486658262998...
Links
- MathOverflow, Is any particular algebraic number known to have unbounded continued fraction coefficients?
- Eric Weisstein's MathWorld, Continued Fraction Constant
- Eric Weisstein's MathWorld, Continued Fraction
Programs
-
Mathematica
FromContinuedFraction[Join[{1}, Range[50]]] // RealDigits[#, 10, 105]& // First (* or *) 1+BesselI[1, 2]/BesselI[0, 2] // RealDigits[#, 10, 105]& // First
-
PARI
1+besseli(1,2)/besseli(0,2) \\ Charles R Greathouse IV, Oct 23 2023
Formula
1 + I_1(2) / I_0(2), where I_n(x) gives the modified Bessel function of the first kind.
Comments