cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A173131 a(n) = (Cosh[(2n-1)ArcSinh[n]])^2.

Original entry on oeis.org

1, 2, 1445, 19740250, 1361599599377, 298514762397852026, 160545187370375075046277, 179656719395983409634002348450, 373368546362937441101158606899394625
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Cosh[(2 n - 1) ArcSinh[n]]^2], {n, 0, 10}] (* Artur Jasinski *)

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016

A173133 a(n) = Sinh[(2n-1) ArcSinh[n]].

Original entry on oeis.org

0, 1, 38, 4443, 1166876, 546365045, 400680904674, 423859315570607, 611038907405197432, 1151555487914640463209, 2748476184146759127540190, 8102732939160371170806346243, 28915133156938367486730067779348
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcSinh[n]]], {n, 0, 20}] (* Artur Jasinski *)
    Round[Table[1/2 (n - Sqrt[1 + n^2])^(2 n - 1) + 1/2 (n + Sqrt[1 + n^2])^(2 n - 1), {n, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)

Formula

a(n) = 1/2 (n - sqrt(1 + n^2))^(2 n - 1) + 1/2 (n + sqrt(1 + n^2))^(2 n - 1). - Artur Jasinski, Feb 14 2010

Extensions

Minor edits by Vaclav Kotesovec, Apr 05 2016

A344331 Side s of squares of type 1 that can be tiled with squares of two different sizes so that the number of large or small squares is the same.

Original entry on oeis.org

10, 20, 30, 40, 50, 60, 68, 70, 78, 80, 90, 100, 110, 120, 130, 136, 140, 150, 156, 160, 170, 180, 190, 200, 204, 210, 220, 222, 230, 234, 240, 250, 260, 270, 272, 280, 290, 300, 310, 312, 320, 330, 340, 350, 360, 370, 380, 390, 400, 408, 410, 420, 430, 440, 444, 450, 460, 468, 470
Offset: 1

Views

Author

Bernard Schott, May 20 2021

Keywords

Comments

This sequence is relative to the generalization of the 4th problem proposed for the pupils in grade 6 during the 19th Mathematical Festival at Moscow in 2008 (see A344330).
There are two types of solutions, the first one is proposed here, while type 2 is described in A344332.
Some notations: s = side of the tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
-> Primitive squares
Side s of primitive squares of type 1 must satisfy the Diophantine equation s^2 = z * (a^2+b^2), with gcd(a, b) = 1, and without using the conditions a^2+b^2 = c^2, when a and b belong to a Pythagorean triple (a, b, c).
In this case, the sides of the primitive squares of type 1 are s = a*b * (a^2+b^2) with 1 <= a < b and gcd(a, b) = 1 (A344333), then corresponding z = (a*b)^2 * (a^2+b^2) (A344334).
Every primitive square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
In particular: for a = 1, b = n, s = n*(n^2+1) form the subsequence A034262 \ {0, 1} and z = n^2*(n^2+1) form the subsequence A071253 \ {0, 2}).
See example with design for a square of side s = 10 with a = 1, b = 2, m = 10, z = 20.
-> Non-primitive squares
If s is the side of a primitive square of type 1 with z squares of side a and z squares of side b, then every k * s is a non-primitive term that gives one or two distinct tilings of type 1, depending of value of k:
- For every k > 1, the square ks X ks can be tiled with k^2*z squares of side a and k^2*z squares of side b (see example).
- For every k = r^4, r>1, the square ks X ks also can be tiled with z squares of side ka and z squares of side kb.
---> Consequences:
1) For every pair (a, b), 1 <= a < b, there is a square of side s = a*b * (a^2+b^2) that can be tiled with squares of side a and side b so that the number z of squares of side a and side b is the same, this number z = (a*b)^2 * (a^2+b^2).
2) If q is a term and K > 1, K * q is another term.
3) Every term is even.

Examples

			Primitive square with s = 10:
   a = 1, b = 2, s = 10, m = 10, z = 20, and
Non-primitive square with s = 20:
   a = 1, b = 2, s = 20, m = 40, z = 80.
      ___ ___ _ ___ ___ _ ___________________
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|                   |
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|                   |
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|                   |
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|                   |
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|___________________|
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |___________________|___________________|
with respectively m = 10 (and m = 40) elementary 2 X 5 rectangles as below:
          ___ ___ _
         |   |   |_|
         |___|___|_|
There are these three possibilities:
- 10 is a primitive term because the square 10 X 10 can be tiled with 20 squares of size 1 X 1 and 20 squares of size 2 X 2, and no smaller square can be tiled with a same number of squares of size 1 X 1 and of squares of size 2 X 2.
- 20 is a non-primitive term because the square 20 X 20 can be tiled with 80 squares of size 1 X 1 and 80 squares of size 2 X 2.
- 30 is a primitive term because the square 30 X 30 can be tiled with 90 squares of size 1 X 1 and 90 squares of size 3 X 3, and no smaller square can be tiled with a same number of squares of size 1 X 1 and of squares of size 3 X 3,
  but also, 30 is a non-primitive term because the square 30 X 30 can be tiled with 180 squares of size 1 X 1 and 180 squares of size 2 X 2.
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

Programs

  • PARI
    isokp1(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->x*y*(x^2+y^2), [1..m]), s); }
    isok(s) = {if (isokp1(s), return (1)); fordiv(s, d, if ((d>1) || (dMichel Marcus, Dec 22 2021

A173134 a(n) = Sinh[(2n-1)ArcCosh[n]]^2.

Original entry on oeis.org

-1, 0, 675, 11309768, 878801253135, 208241673295152024, 118270071682117442287235, 137788343929239264227213170608, 295355309179742652677310128859789375
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcCosh[n]]^2], {n, 0, 20}]

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016

A097726 Pell equation solutions (5*a(n))^2 - 26*b(n)^2 = -1 with b(n):=A097727(n), n >= 0.

Original entry on oeis.org

1, 103, 10505, 1071407, 109273009, 11144775511, 1136657829113, 115927953794015, 11823514629160417, 1205882564220568519, 122988198035868828521, 12543590317094399940623, 1279323224145592925115025, 130478425272533383961791927, 13307520054574259571177661529
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

a(-1) = -1. - Artur Jasinski, Feb 10 2010
5*a(n) gives the x-values in the solution to the Pell equation x^2 - 26*y^2 = -1. - Colin Barker, Aug 24 2013

Examples

			(x,y) = (5,1), (515,101), (52525,10301), ... give the positive integer solutions to x^2 - 26*y^2 = -1.
		

Crossrefs

Cf. A097725 for S(n, 102).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    Table[(1/5) Round[N[Sinh[(2 n - 1) ArcSinh[5]], 100]], {n, 1, 50}] (* Artur Jasinski, Feb 10 2010 *)
    CoefficientList[Series[(1 + x)/(1 - 102 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 13 2014 *)
    LinearRecurrence[{102,-1},{1,103},20] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-102*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 102*x + x^2).
a(n) = S(n, 2*51) + S(n-1, 2*51) = S(2*n, 2*sqrt(26)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 5*i)/(5*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 102*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=103. - Philippe Deléham, Nov 18 2008
a(n) = (1/5)*sinh((2*n-1)*arcsinh(5)), n >= 1. - Artur Jasinski, Feb 10 2010

Extensions

More terms from Harvey P. Dale, Aug 20 2017

A344334 a(n) is the number of large or small squares that are used to tile primitive squares of type 1 whose length of side is A344333(n).

Original entry on oeis.org

20, 90, 272, 468, 650, 1332, 2900, 3600, 2450, 7650, 4160, 6642, 10388, 16400, 10100, 25578, 14762, 27540, 20880, 42048, 50960, 54900, 28730, 90650, 60500, 38612, 98100, 50850, 125712, 142400, 149940, 65792, 141570, 116948, 214650, 83810, 105300, 265232, 354368
Offset: 1

Views

Author

Bernard Schott, Jun 02 2021

Keywords

Comments

Some notations: s = side of the tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
Every term is of the form z = (a*b)^2 * (a^2+b^2) with gcd(a, b) = 1.
Every primitive square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
This sequence is not increasing: a(9) = 2450 < a(8) = 3600.
Every term is even.
If a = 1 and b = n > 1, then number of squares z = n^2 * (n^2+1) is in A071253 \ {0,2}.

Examples

			Square 10 x 10 with a = 1, b = 2, s = 10, z = 20.
      ___ ___ _ ___ ___ _
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_| with 10 elementary 2 x 5 rectangles
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|              ___ ___ _
     |___|___|_|___|___|_|             |   |   |_|
     |   |   |_|   |   |_|             |___|___|_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

Cf. A071253 \ {0,2} is a subsequence.

A069187 Numbers k such that core(k) = ceiling(sqrt(k)) where core(k) is the squarefree part of k (the smallest integer such that k*core(k) is a square).

Original entry on oeis.org

1, 2, 20, 90, 272, 650, 1332, 4160, 6642, 10100, 14762, 20880, 28730, 38612, 50850, 65792, 83810, 130682, 160400, 194922, 234740, 280370, 332352, 391250, 457652, 532170, 615440, 708122, 810900, 924482, 1187010, 1337492, 1501850, 1680912, 1875530, 2314962, 2561600
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

Conjecture: sequence is A071253 minus those entries of A071253 that have their index in A049532, i.e., a(n) is of form n^2*(n^2+1) for all n not in A049532. - Ralf Stephan, Aug 18 2004

Crossrefs

Programs

  • Mathematica
    core[n_] := Times @@ Apply[ Power, {#[[1]], Mod[#[[2]], 2]}& /@ FactorInteger[n], {1}]; Select[Range[500000], core[#] == Ceiling[Sqrt[#]]&] (* Jean-François Alcover, Jul 26 2011 *)

Extensions

More terms from Amiram Eldar, Sep 10 2020

A345286 a(n) is the number of large or small squares that are used to tile primary squares of type 1 (see A344331) whose side length is A345285(n).

Original entry on oeis.org

20, 90, 272, 468, 650, 1280, 1332, 2900, 3600, 2450, 7650, 5760, 4160, 6642, 10388, 810, 16400, 10100, 1088, 25578, 29952, 14762, 27540, 20880, 42048, 50960, 54900, 41600, 28730, 65610, 81920, 90650, 60500, 38612, 98100, 50850, 125712, 85248, 142400, 149940
Offset: 1

Views

Author

Bernard Schott, Jun 13 2021

Keywords

Comments

Notation: s = side of the primary tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
Every term is of the form z = (a*b)^2 * (a^2+b^2) = a*b*s with a < b.
Every such primary square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
This sequence is not increasing: a(10) = 2450 < a(9) = 3600.
If gcd(a, b) = 1, then number of squares z = a*b * (a^2+b^2) is in A344334.
If a = 1 and b = n > 1, then number of squares z = n^2 * (n^2+1) is in A071253 \ {0,2}.
Every term is even.

Examples

			The primary square with side A345285(1) = 10 can be tiled with a(1) = 20 small squares of side a = 1 and 20 large squares of side b = 2.
      ___ ___ _ ___ ___ _
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_| with 10 elementary 2 x 5 rectangles
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|              ___ ___ _
     |___|___|_|___|___|_|             |   |   |_|
     |   |   |_|   |   |_|             |___|___|_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
The primary square with side A345285(6) = 160 can be tiled with a(6) = 1280 small squares of side a = 2 and 1280 large squares of side b = 4.
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

A100606 a(n) = n^4 + n^3 + n.

Original entry on oeis.org

0, 3, 26, 111, 324, 755, 1518, 2751, 4616, 7299, 11010, 15983, 22476, 30771, 41174, 54015, 69648, 88451, 110826, 137199, 168020, 203763, 244926, 292031, 345624, 406275, 474578, 551151, 636636, 731699, 837030, 953343, 1081376, 1221891, 1375674, 1543535, 1726308
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Nov 30 2004

Keywords

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=3, a(2)=26, a(3)=111, a(4)=324. - Harvey P. Dale, Apr 25 2015
From Elmo R. Oliveira, Aug 29 2025: (Start)
G.f.: x*(3 + 11*x + 11*x^2 - x^3)/(1-x)^5.
E.g.f.: x*(3 + 10*x + 7*x^2 + x^3)*exp(x). (End)

A174819 Primes of form n^4 + n^2 - 1.

Original entry on oeis.org

19, 89, 271, 4159, 10099, 20879, 28729, 38611, 50849, 130681, 391249, 457651, 1049599, 1187009, 1501849, 1875529, 3113459, 3420649, 3750031, 4102649, 6767801, 7893289, 9837631, 10559249, 11319859, 14780179, 17854849, 21385999, 31646249
Offset: 1

Views

Author

Michel Lagneau, Dec 01 2010

Keywords

Comments

Primes of the form A071253(n) - 1. - Altug Alkan, Mar 24 2017

Examples

			a(2) = 89 is in the sequence because 3^4 + 3^2 - 1 = 89 is prime.
		

Crossrefs

Cf. A071253.

Programs

  • Maple
    select(isprime, [seq(n^4+n^2-1, n=1..1000)]); # Robert Israel, Mar 24 2017
  • Mathematica
    a={}; Do[p=n^4+n^2-1; If[PrimeQ[p], AppendTo[a, p]], {n, 10^2}]; Print[a];
  • PARI
    for(n=1, 1e3, if(isprime(p=n^4+n^2-1), print1(p ", "))) \\ Altug Alkan, Mar 24 2017
Previous Showing 11-20 of 24 results. Next