cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 155 results. Next

A380989 Position of first appearance of n in A380958 (number of prime factors minus sum of distinct prime exponents).

Original entry on oeis.org

1, 6, 30, 210, 900, 7776, 27000, 279936, 810000, 9261000, 24300000, 362797056, 729000000, 13060694016, 21870000000, 408410100000, 656100000000, 16926659444736, 19683000000000, 609359740010496, 590490000000000, 18010885410000000, 17714700000000000
Offset: 0

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Comments

Is this sequence strictly increasing?
From David Consiglio, Jr., Feb 20 2025: (Start)
The answer to the question above is: no, a(21) < a(20). And all subsequent odd indexed terms are lower than their even predecessors.
All terms must be a product of x primes (with multiplicity) to the y power where x-y = n and x mod y = 0. There are very few combinations of numbers that meet these criteria, so checking all of them to find the minimum outcome is quite fast.
Example --> n=5
6 primes to the 1 power --> 6 distinct primes
2*3*5*7*11*13 = 30030
7 primes to the 2 power -- disallowed (5 mod 2 = 1)
8 primes to the 3 power -- disallowed (4 mod 3 = 1)
9 primes to the 4 power -- disallowed (9 mod 4 = 1)
10 primes to the 5 power --> 2 distinct primes
2*2*2*2*2*3*3*3*3*3 = 7776
The minimum value is 7776 and thus a(5) = 7776. (End)

Examples

			The terms together with their prime indices begin:
        1: {}
        6: {1,2}
       30: {1,2,3}
      210: {1,2,3,4}
      900: {1,1,2,2,3,3}
     7776: {1,1,1,1,1,2,2,2,2,2}
    27000: {1,1,1,2,2,2,3,3,3}
   279936: {1,1,1,1,1,1,1,2,2,2,2,2,2,2}
   810000: {1,1,1,1,2,2,2,2,3,3,3,3}
  9261000: {1,1,1,2,2,2,3,3,3,4,4,4}
		

Crossrefs

Position of first appearance of n in A001222 - A136565.
For factors instead of exponents we have A280286 (sorted A381075), firsts of A280292.
For indices instead of exponents we have A380956 (sorted A380957), firsts of A380955.
A000040 lists the primes, differences A001223.
A005361 gives product of prime exponents.
A055396 gives least prime index, greatest A061395.
A056239 (reverse A296150) adds up prime indices, row sums of A112798.
A124010 lists prime exponents (signature); A001221, A051903, A051904.

Programs

  • Mathematica
    prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]];
    q=Table[Total[prisig[n]]-Total[Union[prisig[n]]],{n,10000}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[q,k][[1,1]],{k,0,mnrm[q+1]-1}]

Extensions

a(10)-a(11) from Michel Marcus, Feb 20 2025
a(12) and beyond from David Consiglio, Jr., Feb 20 2025

A323055 Numbers with exactly two distinct exponents in their prime factorization, or two distinct parts in their prime signature.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2019

Keywords

Comments

The first term is A006939(2) = 12.
First differs from A059404 in lacking 360, whose prime signature has three distinct parts.
Positions of 2's in A071625.
Numbers k such that A001221(A181819(k)) = 2.
The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} 1/((n-1)*psi(n)) = 0.3611398..., where psi is the Dedekind psi function (A001615) (Sanna, 2020). - Amiram Eldar, Oct 18 2020

Examples

			3000 = 2^3 * 3^1 * 5^3 has two distinct exponents {1, 3}, so belongs to the sequence.
		

Crossrefs

One distinct exponent: A062770 or A072774.
Two distinct exponents: this sequence.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.

Programs

  • Maple
    isA323055 := proc(n)
        local eset;
        eset := {};
        for pf in ifactors(n)[2] do
            eset := eset union {pf[2]} ;
        end do:
        simplify(nops(eset) = 2 ) ;
    end proc:
    for n from 12 to 1000 do
        if isA323055(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 09 2019
  • Mathematica
    Select[Range[100],Length[Union[Last/@FactorInteger[#]]]==2&]

A325250 Number of integer partitions of n whose omega-sequence is strict (no repeated parts).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 4, 6, 2, 11, 3, 10, 12, 17, 12, 31, 22, 42, 47, 57, 60, 98, 94, 119, 143, 174, 182, 256, 253, 321, 365, 425, 480, 615, 645, 803, 946, 1180, 1341, 1766, 2021, 2607, 3145, 3951, 4727, 6123, 7236, 9136
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).
The Heinz numbers of these partitions are given by A325247.

Examples

			The a(1) = 1 through a(10) = 6 partitions (A = 10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              1111         222              2222      222111     3322
                           2211             3311      111111111  4411
                           111111           11111111             22222
                                                                 1111111111
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@omseq[#]&]],{n,0,30}]

Formula

a(n) + A325262(n) = A000041(n).

A325251 Numbers whose omega-sequence covers an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The enumeration of these partitions by sum is given by A325260.

Examples

			The sequence of terms together with their omega sequences begins:
   1:              31: 1             63: 3 2 2 1
   2: 1            33: 2 2 1         65: 2 2 1
   3: 1            34: 2 2 1         67: 1
   4: 2 1          35: 2 2 1         68: 3 2 2 1
   5: 1            37: 1             69: 2 2 1
   6: 2 2 1        38: 2 2 1         71: 1
   7: 1            39: 2 2 1         73: 1
   9: 2 1          41: 1             74: 2 2 1
  10: 2 2 1        43: 1             75: 3 2 2 1
  11: 1            44: 3 2 2 1       76: 3 2 2 1
  12: 3 2 2 1      45: 3 2 2 1       77: 2 2 1
  13: 1            46: 2 2 1         79: 1
  14: 2 2 1        47: 1             82: 2 2 1
  15: 2 2 1        49: 2 1           83: 1
  17: 1            50: 3 2 2 1       84: 4 3 2 2 1
  18: 3 2 2 1      51: 2 2 1         85: 2 2 1
  19: 1            52: 3 2 2 1       86: 2 2 1
  20: 3 2 2 1      53: 1             87: 2 2 1
  21: 2 2 1        55: 2 2 1         89: 1
  22: 2 2 1        57: 2 2 1         90: 4 3 2 2 1
  23: 1            58: 2 2 1         91: 2 2 1
  25: 2 1          59: 1             92: 3 2 2 1
  26: 2 2 1        60: 4 3 2 2 1     93: 2 2 1
  28: 3 2 2 1      61: 1             94: 2 2 1
  29: 1            62: 2 2 1         95: 2 2 1
		

Crossrefs

Positions of normal numbers (A055932) in A325248.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],normQ[omseq[#]]&]

A325274 Sum of the omega-sequence of n!.

Original entry on oeis.org

0, 0, 1, 5, 9, 13, 14, 20, 23, 25, 24, 30, 33, 35, 35, 40, 44, 46, 49, 51, 54, 56, 59, 61, 65, 67, 72, 75, 78, 80, 83, 85, 90, 90, 95, 97, 101, 103, 105, 106, 110, 112, 115, 117, 122, 125, 127, 129, 134, 136, 139, 140, 143, 145, 149, 153, 157, 159, 160, 162
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1), with sum 13.

Crossrefs

a(n) = A056239(A325275(n)).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Total[omseq[n!]],{n,0,100}]

A325275 Heinz number of the omega-sequence of n!.

Original entry on oeis.org

1, 1, 2, 18, 126, 990, 850, 11970, 19530, 25830, 4606, 73458, 92862, 116298, 43134, 229086, 275418, 366894, 440946, 515394, 568062, 613206, 769158, 963378, 1060254, 1135602, 6108570, 6431490, 6915870, 8923590, 9398610, 10191870, 11352510, 3139866, 16458210
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

A001222(a(n)) = A325272.
A055396(a(n)/2) = A325273.
A056239(a(n)) = A325274.
Row n of A325276 is row a(n) of A112798.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Times@@Prime/@omseq[n!],{n,30}]

A325610 Adjusted frequency depth of 2^n - 1.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 3, 3, 3, 3, 5, 1, 3, 3, 3, 1, 5, 1, 5, 5, 3, 3, 5, 3, 3, 3, 3, 3, 5, 1, 3, 3, 3, 3, 5, 3, 3, 3, 5, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 1, 3, 5, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 5, 3, 3, 3, 5, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[fdadj[2^n-1],{n,100}]

A325625 Sorted prime signature of 2^n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The sorted prime signature of n is row n of A124010.

Examples

			We have 2^126 - 1 = 3^3 * 7^2 * 19 * 43 * 73 * 127 * 337 * 5419 * 92737 * 649657 * 77158673929, so row n = 126 is {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3}.
Triangle begins:
  1
  1
  1
  1 1
  1
  1 2
  1
  1 1 1
  1 1
  1 1 1
  1 1
  1 1 1 2
  1
  1 1 1
  1 1 1
  1 1 1 1
  1
  1 1 1 3
  1
  1 1 1 1 2
		

Crossrefs

Programs

  • Mathematica
    Table[Sort[Last/@FactorInteger[2^n-1]],{n,30}]

A353743 Least number with run-sum trajectory of length k; a(0) = 1.

Original entry on oeis.org

1, 2, 4, 12, 84, 1596, 84588, 11081028, 3446199708, 2477817590052, 4011586678294188, 14726534696017964148, 120183249654202605411828, 2146833388573021140471483564, 83453854313999050793547980583372, 7011542477899258250521520684673165324
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832, A353847) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 corresponds to the partitions (2,1,1) -> (2,2) -> (4).

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
     12: {1,1,2}
     84: {1,1,2,4}
   1596: {1,1,2,4,8}
  84588: {1,1,2,4,8,16}
		

Crossrefs

The ordered version is A072639, for run-lengths A333629.
The version for run-lengths is A325278, firsts in A182850 or A323014.
The run-sum trajectory is the iteration of A353832.
The first length-k row of A353840 has index a(k).
Other sequences pertaining to this trajectory are A353841-A353846.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Join[{1,2},Table[2*Product[Prime[2^k],{k,0,n}],{n,0,6}]]

Formula

a(n > 1) = 2 * Product_{k=0..n-2} prime(2^k).
a(n > 0) = 2 * A325782(n).

A358903 Number of integer partitions of n whose parts have all different numbers of distinct prime factors (A001221).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 7, 9, 10, 10, 10, 9, 11, 15, 14, 13, 15, 14, 14, 17, 16, 17, 17, 16, 16, 17, 17, 21, 26, 24, 23, 25, 27, 29, 32, 31, 29, 36, 36, 35, 37, 37, 42, 49, 45, 44, 50, 49, 50, 58, 55, 55, 58, 56, 58, 66, 62, 65, 75
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(15) = 8 partitions are: (15), (14,1), (12,3), (12,2,1), (10,5), (10,4,1), (6,9), (8,6,1).
		

Crossrefs

Counting prime factors with multiplicity gives A358901.
The weakly decreasing version is A358902, with multiplicity A358335.
A001222 counts prime factors, distinct A001221.
A116608 counts partitions by sum and number of distinct parts.
A358836 counts multiset partitions with all distinct block sizes.

Programs

  • Maple
    p:= proc(n) option remember; nops(ifactors(n)[2]) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          add((t-> `if`(t b(n$2):
    seq(a(n), n=0..68);  # Alois P. Heinz, Feb 14 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@PrimeNu/@#&]],{n,0,30}]

Extensions

a(56) and beyond from Lucas A. Brown, Dec 14 2022
Previous Showing 81-90 of 155 results. Next