cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
Offset: 0

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Comments

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by M. F. Hasler, Nov 11 2019
    
  • Python
    from sympy import prime, primerange, factorint
    from operator import mul
    from functools import reduce
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
    def a(n): return a108951(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
    
  • Python
    from sympy import primorial
    from math import prod
    def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283477 n) (A108951 (A019565 n)))
    ;; Recursive "binary tree" implementation, using memoization-macro definec:
    (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
    

Formula

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

Extensions

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019

A212172 Row n of table represents second signature of n: list of exponents >= 2 in canonical prime factorization of n, in nonincreasing order, or 0 if no such exponent exists.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A056170(n) if A056170(n) is positive, or 1 if A056170(n) = 0.
The multiset of exponents >=2 in the prime factorization of n completely determines a(n) for over 20 sequences in the database (see crossreferences). It also determines the fractions A034444(n)/A000005(n) and A037445(n)/A000005(n).
For squarefree numbers, this multiset is { } (the empty multiset). The use of 0 in the table to represent each n with no exponents >=2 in its prime factorization accords with the usual OEIS practice of using 0 to represent nonexistent elements when possible. In comments, the second signature of squarefree numbers will be represented as { }.
For each second signature {S}, there exist values of j and k such that, if the second signature of n is {S}, then A085082(n) is congruent to j modulo k. These values are nontrivial unless {S} = { }. Analogous (but not necessarily identical) values of j and k also exist for each second signature with respect to A088873 and A181796.
Each sequence of integers with a given second signature {S} has a positive density, unlike the analogous sequences for prime signatures. The highest of these densities is 6/Pi^2 = 0.607927... for A005117 ({S} = { }).

Examples

			First rows of table read: 0; 0; 0; 2; 0; 0; 0; 3; 2; 0; 0; 2;...
12 = 2^2*3 has positive exponents 2 and 1 in its canonical prime factorization (1s are often left implicit as exponents). Since only exponents that are 2 or greater appear in a number's second signature, 12's second signature is {2}.
30 = 2*3*5 has no exponents greater than 1 in its prime factorization. The multiset of its exponents >= 2 is { } (the empty multiset), represented in the table with a 0.
72 = 2^3*3^2 has positive exponents 3 and 2 in its prime factorization, as does 108 = 2^2*3^3. Rows 72 and 108 both read {3,2}.
		

Crossrefs

A181800 gives first integer of each second signature. Also see A212171, A212173-A212181, A212642-A212644.
Functions determined by exponents >=2 in the prime factorization of n:
Additive: A046660, A056170.
Other: A007424, A051903 (for n > 1), A056626, A066301, A071325, A072411, A091050, A107078, A185102 (for n > 1), A212180.
Sequences that contain all integers of a specific second signature: A005117 (second signature { }), A060687 ({2}), A048109 ({3}).

Programs

  • Magma
    &cat[IsEmpty(e)select [0]else Reverse(Sort(e))where e is[pe[2]:pe in Factorisation(n)|pe[2]gt 1]:n in[1..102]]; // Jason Kimberley, Jun 13 2012
  • Mathematica
    row[n_] := Select[ FactorInteger[n][[All, 2]], # >= 2 &] /. {} -> 0 /. {k__} -> Sequence[k]; Table[row[n], {n, 1, 100}] (* Jean-François Alcover, Apr 16 2013 *)

Formula

For nonsquarefree n, row n is identical to row A057521(n) of table A212171.

A316855 Heinz numbers of integer partitions whose reciprocal sum is 1.

Original entry on oeis.org

2, 9, 125, 147, 195, 2401, 3185, 4225, 6475, 6591, 7581, 10101, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 107653, 123823, 142805, 161051, 164255, 164983, 171941, 218855, 228085, 267883, 304175, 312785, 333925, 333935, 335405, 343735, 355355, 390963
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Sequence of all integer partitions whose reciprocal sum is 1 begins: (1), (2,2), (3,3,3), (4,4,2), (6,3,2), (4,4,4,4), (6,4,4,3), (6,6,3,3), (12,4,3,3), (6,6,6,2), (8,8,4,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,10000],Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1&]

A316857 Heinz numbers of integer partitions whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 147, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 195, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[1/Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]&]

A316856 Heinz numbers of integer partitions whose reciprocal sum is an integer.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 125, 128, 144, 147, 162, 195, 250, 256, 288, 294, 324, 390, 500, 512, 576, 588, 648, 729, 780, 1000, 1024, 1125, 1152, 1176, 1296, 1323, 1458, 1560, 1755, 2000, 2048, 2250, 2304, 2352, 2401, 2592, 2646, 2916, 3120
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			195 is the Heinz number of (6,3,2), which has reciprocal sum 1/6 + 1/3 + 1/2 = 1, which is an integer, so 195 belongs to the sequence.
The sequence of all integer partitions whose reciprocal sum is an integer begins: (), (1), (11), (111), (22), (1111), (221), (11111), (2211), (111111), (22111), (2222).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]],{m,If[#==1,{},FactorInteger[#]]}]]&]

A275725 a(n) = A275723(A002110(1+A084558(n)), n); prime factorization encodings of cycle-polynomials computed for finite permutations listed in the order that is used in tables A060117 / A060118.

Original entry on oeis.org

2, 4, 18, 8, 12, 8, 150, 100, 54, 16, 24, 16, 90, 40, 54, 16, 36, 16, 60, 40, 36, 16, 24, 16, 1470, 980, 882, 392, 588, 392, 750, 500, 162, 32, 48, 32, 270, 80, 162, 32, 108, 32, 120, 80, 72, 32, 48, 32, 1050, 700, 378, 112, 168, 112, 750, 500, 162, 32, 48, 32, 450, 200, 162, 32, 72, 32, 300, 200, 108, 32, 48, 32, 630, 280, 378, 112, 252, 112, 450, 200
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2016

Keywords

Comments

In this context "cycle-polynomials" are single-variable polynomials where the coefficients (encoded with the exponents of prime factorization of n) are equal to the lengths of cycles in the permutation listed with index n in tables A060117 or A060118. See the examples.

Examples

			Consider the first eight permutations (indices 0-7) listed in A060117:
  1 [Only the first 1-cycle explicitly listed thus a(0) = 2^1 = 2]
  2,1 [One transposition (2-cycle) in beginning, thus a(1) = 2^2 = 4]
  1,3,2 [One fixed element in beginning, then transposition, thus a(2) = 2^1 * 3^2 = 18]
  3,1,2 [One 3-cycle, thus a(3) = 2^3 = 8]
  3,2,1 [One transposition jumping over a fixed element, a(4) = 2^2 * 3^1 = 12]
  2,3,1 [One 3-cycle, thus a(5) = 2^3 = 8]
  1,2,4,3 [Two 1-cycles, then a 2-cycle, thus a(6) = 2^1 * 3^1 * 5^2 = 150].
  2,1,4,3 [Two 2-cycles, not crossed, thus a(7) = 2^2 * 5^2 = 100]
and also the seventeenth one at n=16 [A007623(16)=220] where we have:
  3,4,1,2 [Two 2-cycles crossed, thus a(16) = 2^2 * 3^2 = 36].
		

Crossrefs

Cf. A275807 (terms divided by 2).
Cf. also A275733, A275734, A275735 for other such prime factorization encodings of A060117/A060118-related polynomials.

Programs

Formula

a(n) = A275723(A002110(1+A084558(n)), n).
Other identities:
A001221(a(n)) = 1+A257510(n) (for all n >= 1).
A001222(a(n)) = 1+A084558(n).
A007814(a(n)) = A275832(n).
A048675(a(n)) = A275726(n).
A051903(a(n)) = A275803(n).
A056169(a(n)) = A275851(n).
A046660(a(n)) = A060130(n).
A072411(a(n)) = A060131(n).
A056170(a(n)) = A060128(n).
A275812(a(n)) = A060129(n).
a(n!) = 2 * A243054(n) = A000040(n)*A002110(n) for all n >= 1.

A289625 a(n) = prime factorization encoding of the structure of the multiplicative group of integers modulo n.

Original entry on oeis.org

1, 1, 4, 4, 16, 4, 64, 36, 64, 16, 1024, 36, 4096, 64, 144, 144, 65536, 64, 262144, 144, 576, 1024, 4194304, 900, 1048576, 4096, 262144, 576, 268435456, 144, 1073741824, 2304, 9216, 65536, 36864, 576, 68719476736, 262144, 36864, 3600, 1099511627776, 576, 4398046511104, 9216, 36864, 4194304, 70368744177664, 3600, 4398046511104, 1048576, 589824, 36864
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2017

Keywords

Comments

Here multiplicative group of integers modulo n is decomposed as a product of cyclic groups C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i > j, like PARI-function znstar does. a(n) is then 2^{k_1} * 3^{k_2} * 5^{k_3} * ... * prime(m)^{k_m}.

Examples

			For n=5, the multiplicative group modulo 5 is isomorphic to C_4, which does not factorize to smaller subgroups, thus a(5) = 2^4 = 16.
For n=8, the multiplicative group modulo 8 is isomorphic to C_2 x C_2, thus a(8) = 2^2 * 3^2 = 36.
For n=15, the multiplicative group modulo 15 is isomorphic to C_4 x C_2, thus a(15) = 2^4 * 3^2 = 144.
		

Crossrefs

Cf. A033948 (positions of terms that are powers of 2).
Cf. A289626 (rgs-transform of this sequence).

Programs

  • PARI
    A289625(n) = { my(m=1,p=2,v=znstar(n)[2]); for(i=1,length(v),m *= p^v[i]; p = nextprime(p+1)); (m); };

Formula

A005361(a(n)) = A000010(n).
A072411(a(n)) = A002322(n).
A007814(a(n)) = A002322(n) for n > 2.
A001221(a(n)) = A046072(n) for n > 2.

A290095 a(n) = A275725(A060126(n)); prime factorization encodings of cycle-polynomials computed for finite permutations listed in reversed colexicographic ordering.

Original entry on oeis.org

2, 4, 18, 8, 8, 12, 150, 100, 54, 16, 16, 24, 54, 16, 90, 40, 36, 16, 16, 24, 40, 60, 16, 36, 1470, 980, 882, 392, 392, 588, 750, 500, 162, 32, 32, 48, 162, 32, 270, 80, 108, 32, 32, 48, 80, 120, 32, 72, 750, 500, 162, 32, 32, 48, 1050, 700, 378, 112, 112, 168, 450, 200, 162, 32, 32, 72, 200, 300, 32, 48, 108, 32, 162, 32, 270, 80, 108, 32, 378, 112, 630, 280
Offset: 0

Views

Author

Antti Karttunen, Aug 17 2017

Keywords

Comments

In this context "cycle-polynomials" are single-variable polynomials where the coefficients (encoded with the exponents of prime factorization of n) are equal to the lengths of cycles in the permutation listed with index n in table A055089 (A195663). See the examples.

Examples

			Consider the first eight permutations (indices 0-7) listed in A055089:
  1 [Only the first 1-cycle explicitly listed thus a(0) = 2^1 = 2]
  2,1 [One transposition (2-cycle) in beginning, thus a(1) = 2^2 = 4]
  1,3,2 [One fixed element in beginning, then transposition, thus a(2) = 2^1 * 3^2 = 18]
  3,1,2 [One 3-cycle, thus a(3) = 2^3 = 8]
  2,3,1 [One 3-cycle, thus a(4) = 2^3 = 8]
  3,2,1 [One transposition jumping over a fixed element, a(5) = 2^2 * 3^1 = 12]
  1,2,4,3 [Two 1-cycles, then a 2-cycle, thus a(6) = 2^1 * 3^1 * 5^2 = 150].
  2,1,4,3 [Two 2-cycles, not crossed, thus a(7) = 2^2 * 5^2 = 100].
		

Crossrefs

Formula

a(n) = A275725(A060126(n)).
Other identities:
A046523(a(n)) = A290096(n).
A056170(a(n)) = A055090(n).
A046660(a(n)) = A055091(n).
A072411(a(n)) = A055092(n).
A275812(a(n)) = A055093(n).

A290104 a(n) = A003963(n) / A290103(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2017

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). Then a(n) is the product divided by the LCM of the integer partition with Heinz number n. - Gus Wiseman, Aug 01 2018

Examples

			n = 21 = 3 * 7 = prime(2) * prime(4), thus A003963(21) = 2*4 = 8, while A290103(21) = lcm(2,4) = 4, so a(21) = 8/4 = 2.
		

Crossrefs

Differs from A290106 for the first time at n=21.

Programs

  • Mathematica
    Table[If[n == 1, 1, Apply[Times, Map[PrimePi[#1]^#2 & @@ # &, #]] / Apply[LCM, PrimePi[#[[All, 1]] ]]] &@ FactorInteger@ n, {n, 120}] (* Michael De Vlieger, Aug 14 2017 *)
  • Scheme
    (define (A290104 n) (/ (A003963 n) (A290103 n)))

Formula

a(n) = A003963(n) / A290103(n).
Other identities. For all n >= 1:
a(A181819(n)) = A005361(n)/A072411(n).

A055092 Order of each permutation given in reversed colexicographic ordering A055089, i.e., the least common multiple of their cycle lengths.

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 2, 2, 3, 4, 4, 3, 3, 4, 2, 3, 2, 4, 4, 3, 3, 2, 4, 2, 2, 2, 2, 6, 6, 2, 3, 6, 4, 5, 5, 4, 4, 5, 3, 4, 6, 5, 5, 4, 4, 3, 5, 6, 3, 6, 4, 5, 5, 4, 2, 2, 3, 4, 4, 3, 2, 6, 4, 5, 5, 6, 6, 2, 5, 4, 6, 5, 4, 5, 3, 4, 6, 5, 3, 4, 2, 3, 2, 4, 4, 5, 2, 6, 6, 5, 5, 6, 6, 5, 2, 4, 5, 4, 4, 3, 5, 6, 4, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Apr 04 2000

Keywords

Crossrefs

Programs

  • Maple
    A055092(n) = count_permorder(convert(PermRevLexUnrank(j), 'disjcyc')).
    count_permorder := proc(l) local c,t; t := 1; for c in l do t := ilcm(t,nops(c)); od; RETURN(t); end;
    # Procedure PermRevLexUnrank given in A055089.

Formula

a(n) = A072411(A290095(n)) = A060131(A060126(n)). - Antti Karttunen, Dec 30 2017

Extensions

Entry revised by Antti Karttunen, Dec 30 2017
Previous Showing 11-20 of 34 results. Next