cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 59 results. Next

A320897 a(n) = Sum_{k=1..n} k^2 * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 17, 53, 197, 297, 873, 1069, 2093, 2822, 4422, 4906, 10090, 10766, 13902, 17502, 23902, 25058, 36722, 38166, 52566, 59622, 67366, 69482, 106346, 111971, 122787, 134451, 162675, 166039, 223639, 227483, 264347, 281771, 300267, 319867, 424843, 430319, 453423
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Comments

In general, for m>=0, Sum_{k=1..n} k^m * tau(k)^2 ~ n^(m+1) * (log(n))^3 / ((m+1) * Pi^2).

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^3 * (2*Pi^6*(-1 + 12*g - 54*g^2 + 108*g^3 + 36*s1 - 324*g*s1 + 54*s2) - 93312*z1^3 + 2592*Pi^2*z1*(-z1 + 12*g*z1 + 6*z2) - 72*Pi^4*(z1 - 12*g*z1 + 54*g^2*z1 - 36*s1*z1 - 3*z2 + 36*g*z2 + 6*z3) + 6*(Pi^6*(1 - 12*g + 54*g^2 - 36*s1) + 1296*Pi^2*z1^2 - 36*Pi^4*(-z1 + 12*g*z1 + 3*z2))*log(n) + 9*((-1 + 12*g)*Pi^6 - 36*Pi^4*z1)*log(n)^2 + 9*Pi^6*log(n)^3) / (27*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A329117 Decimal expansion of Sum_{k>=1} (k^(1/k^2) - 1).

Original entry on oeis.org

9, 7, 1, 4, 9, 9, 0, 3, 4, 2, 8, 3, 3, 0, 8, 7, 5, 7, 2, 2, 2, 6, 2, 5, 0, 6, 2, 3, 1, 4, 7, 5, 4, 5, 8, 0, 0, 2, 2, 5, 5, 1, 0, 1, 4, 8, 9, 7, 0, 2, 3, 9, 8, 4, 2, 9, 0, 8, 9, 0, 4, 2, 5, 5, 9, 4, 0, 8, 4, 1, 1, 7, 0, 0, 9, 9, 5, 5, 4, 2, 4, 3, 7, 3, 0
Offset: 0

Views

Author

Daniel Hoyt, Nov 05 2019

Keywords

Examples

			0.971499034283308757222625062314754580022...
		

Crossrefs

Programs

  • Mathematica
    digits = 120; d = 1; j = 2; s = Pi^2 * (2*Log[Glaisher] - Log[2*Pi]/6 - EulerGamma/6); While[Abs[d] > 10^(-digits - 5), d = (-1)^j/j!*Derivative[j][Zeta][2*j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 18 2023 *)
  • PARI
    sumpos(k=1, k^(1/k^2) - 1) \\ Michel Marcus, Nov 05 2019

Formula

Equals Sum_{k>=1} (-1)^k / k! * k-th derivative of zeta(2*k). - Vaclav Kotesovec, Jun 18 2023

A365210 The number of divisors d of n such that gcd(d, n/d) is a 5-rough number (A007310).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 3, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 3, 6, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 6, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

First differs from A034444 at n = 25.
The sum of these divisors is A365211(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3 , 2, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] <= 3, 2, f[i,2]+1));}

Formula

Multiplicative with a(p^e) = 2 for p = 2 and 3, and a(p^e) = e+1 for a prime p >= 5.
a(n) <= A000005(n), with equality if and only if n is neither divisible by 4 nor by 9.
a(n) >= A034444(n), with equality if and only if n is not divisible by a square of a prime >= 5.
a(n) = A000005(A065330(n)) * A034444(A065331(n)).
Dirichlet g.f.: (1-1/4^s) * (1-1/9^s) * zeta(s)^2.
Sum_{k=1..n} a(k) ~ (2*n/3) * (log(n) + 2*gamma - 1 + 2*log(2)/3 + log(3)/4), where gamma is Euler's constant (A001620).

A252898 Decimal expansion of lim_{n->infinity} -FractionalPart[Zeta'(1+1/n)] or -FractionalPart[Zeta'(1-1/n)], where Zeta' is the first derivative of the Riemann zeta function.

Original entry on oeis.org

9, 2, 7, 1, 8, 4, 1, 5, 4, 5, 1, 6, 3, 2, 3, 2, 7, 5, 1, 3, 9, 4, 1, 3, 6, 2, 4, 1, 2, 5, 0, 9, 8, 6, 8, 0, 8, 6, 2, 2, 6, 3, 6, 6, 1, 6, 6, 5, 6, 6, 2, 0, 4, 7, 4, 0, 0, 9, 9, 3, 4, 4, 0, 2, 5, 8, 5, 9, 8, 5, 6, 6, 4, 2, 8, 4, 8, 8, 5, 1, 5, 1, 2, 1, 9, 1, 3, 0, 7, 1, 7, 5, 5, 1, 5, 5, 9, 8, 5, 3, 9, 5, 9, 2, 2, 7, 9
Offset: 0

Views

Author

Richard R. Forberg, Dec 24 2014

Keywords

Comments

Zeta'(x) -> negative infinity as x -> 1, from above and below.
When 1 is approached using arguments of (1+1/n) or (1-1/n), its fractional part converges to this constant.
The Euler-Mascheroni constant is the fractional part as x->1 for Zeta(x), but with a different symmetry approaching 1 from above vs. below. See A001620 and below.
The integer part of Zeta'(1 + 1/n) or Zeta'(1 - 1/n) = -(n^2 - 1).
Corresponding constants, as taken from the fractional part, exist for the higher order derivatives of the Riemann zeta as x->1 with these arguments. The list below shows converged values up to the 10th derivative approaching 1 from above, using
x = 1 + 1/n, as n -> infinity, with signs:
Derivative[1] = -0.9271841545163232751394136... (this entry)
Derivative[2] = 0.9903096368071276815154696...
Derivative[3] = -0.0020538344203033458661600...
Derivative[4] = 0.0023253700654673000057468...
Derivative[5] = -0.0007933238173010627017533...
Derivative[6] = 0.9997612306545698003901275...
Derivative[7] = -0.9994727104329422489539259...
Derivative[8] = 0.9996478766461969604903979...
Derivative[9] = -0.9999656052255819119518220...
Derivative[10]= 0.0002053328149090647946837...
Even order derivatives, D[2m], (e.g., 2nd, 4th, 6th, ...) have different fractional values when approaching 1 from below equal to: -(1-D[2m]). The same is true for D[0], or Zeta itself.
The integer sequences associated with the integer part, with x ->1 from above and starting with the argument x= 2 = 1+1/n, hence n = 1 to infinity, are:
Derivative[1] = -(n^2-1)
Derivative[2] = (2!*n^3-1)
Derivative[3] = -(3!*n^4)
Derivative[4] = (4!*n^5)
Derivative[5] = -(5!*n^6)
Derivative[6] = (6!*n^7-1), except at n=1, where value = 720 with fract ~0.0001
Derivative[7] = -(7!*n^8-1)
Derivative[8] = (8!*n^9-1)
Derivative[9] = -(9!*n^10-1)
Derivative[10] = (10!*n^11)
Thus, rounding the m-th derivative of Zeta(x) at x=2 (n=1) gives (-1)^m * m! for m>=1. See A073002.

Examples

			0.9271841545163232751394136...
		

Crossrefs

Programs

  • Maple
    s:= convert(evalf(1+gamma(1), 140), string):
    seq(parse(s[n+2]), n=0..110);  # Alois P. Heinz, Dec 30 2014
  • Mathematica
    FractionalPart[N[Derivative[1][Zeta][
       1 + 1/(1000000000000000000000000000000000000000000000000000000000000)], 400]]

Formula

Limit_{n -> infinity} -FractionalPart[Zeta'(1+1/n)]
Limit_{n -> infinity} -FractionalPart[Zeta'(1-1/n)]
Equals 1 - A082633. - Alois P. Heinz, Dec 30 2014

Extensions

More digits from Alois P. Heinz, Dec 30 2014

A335032 Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + p^(1 - s) - p^(-s)).

Original entry on oeis.org

1, 4, 6, 10, 10, 24, 14, 22, 21, 40, 22, 60, 26, 56, 60, 46, 34, 84, 38, 100, 84, 88, 46, 132, 55, 104, 66, 140, 58, 240, 62, 94, 132, 136, 140, 210, 74, 152, 156, 220, 82, 336, 86, 220, 210, 184, 94, 276, 105, 220, 204, 260, 106, 264, 220, 308, 228, 232, 118
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 20 2020

Keywords

Comments

Dirichlet convolution of A000203 with abs(A097945).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, n/d] * Abs[MoebiusMu[d]] * EulerPhi[d], {d, Divisors[n]}], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X)/(1 - p*X))[n], ", "))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X/(1 - X))/(1 - p*X))[n], ", "))

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1)^2 / zeta(2*s-2) * Product_{primes p} (1 - 1/(p^s + p)).
Dirichlet g.f.: zeta(s) * zeta(s-1)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Let f(s) = Product_{primes p} (1 - 1/(p^s + p)), then Sum_{k=1..n} a(k) ~ n^2 * ((log(n)/2 + gamma - 3*zeta'(2)/Pi^2 - 1/4)*f(2) + f'(2)/2), where f(2) = A065463 = Product_{primes p} (1 - 1/(p*(p+1))) = 0.7044422009991655927366033503266372..., f'(2) = f(2) * Sum_{primes p} p*log(p) / ((p+1)*(p^2+p-1)) = 0.23219454323726621271960146689644280341444084188447499043209938838191022838..., for zeta'(2) see A073002 and gamma is the Euler-Mascheroni constant A001620.
a(n) = Sum_{d|n} A176345(d). - Ridouane Oudra, Jan 14 2022
Multiplicative with a(p^e) = sigma(p^e) + p^e - 1. - Amiram Eldar, Dec 25 2022

A365208 The number of divisors d of n such that gcd(d, n/d) is a 3-smooth number (A003586).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 2, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 2, 4, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 4, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

First differs from A000005 at n = 25.
The sum of these divisors is A365209(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3, e + 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] <= 3, f[i,2]+1, 2));}

Formula

Multiplicative with a(p^e) = e+1 if p = 2 or 3, and a(p^e) = 2 for a prime p >= 5.
a(n) <= A000005(n), with equality if and only if n is not divisible by a square of a prime >= 5.
a(n) >= A034444(n), with equality if and only if n is neither divisible by 4 nor by 9.
a(n) = A000005(A065331(n)) * A034444(A065330(n)).
Dirichlet g.f.: (4^s/(4^s-1)) * (9^s/(9^s-1)) * zeta(s)^2/zeta(2*s).
Sum_{k==1..n} a(k) ~ (9/Pi^2)*n*(log(n) + 2*gamma - 2*log(2)/3 - log(3)/4 - 2*zeta'(2)/zeta(2) - 1), where gamma is Euler's constant (A001620).

A368547 Decimal expansion of the Wolf-Kawalec constant of index 1.

Original entry on oeis.org

2, 3, 6, 1, 5, 2, 8, 8, 6, 4, 7, 7, 1, 2, 2, 9, 7, 4, 8, 6, 0, 5, 7, 8, 2, 8, 6, 0, 6, 0, 3, 2, 6, 9, 6, 0, 1, 5, 3, 2, 2, 6, 2, 9, 7, 9, 2, 3, 3, 1, 0, 9, 7, 6, 4, 0, 7, 3, 4, 8, 4, 0, 1, 7, 0, 8, 3, 9, 1, 1, 5, 6, 4, 4, 0, 4, 1, 3, 1, 6, 5, 7, 9, 5, 2, 9, 2, 8, 6, 6, 6, 0, 5, 5, 5, 1, 3, 0, 8, 4, 0, 4, 1, 1, 8
Offset: 0

Views

Author

Artur Jasinski, Dec 30 2023

Keywords

Comments

For the Wolf-Kawalec constant of index 0 see A368551.
For the Wolf-Kawalec constant of index 2 see A368568.

Examples

			0.23615288647712297486...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Limit[D[Zeta[x]/Zeta[2 x] - 6/(Pi^2 (x - 1)), x], x -> 1],
      10, 105][[1]]

Formula

Equals -(864*(zeta'(2))^2 - 72*Pi^2*(gamma*zeta'(2) + zeta''(2)) - 6*Pi^4*gamma_1)/Pi^6 where gamma_1 is A082633 negated.
Equals -(6*Pi^2*(2*(gamma + log(2) - 12*log(Glaisher) + log(Pi))*(gamma + 2*log(2) - 24*log(Glaisher) + 2*log(Pi)) - gamma_1) - 72*zeta''(2))/Pi^4 where Glaisher is the Glaisher-Kinkelin constant A (see A074962).

A368551 Decimal expansion of 6*gamma/Pi^2 - 72*zeta'(2)/Pi^4.

Original entry on oeis.org

1, 0, 4, 3, 8, 9, 4, 5, 1, 5, 7, 1, 1, 9, 3, 8, 2, 9, 7, 4, 0, 4, 5, 6, 3, 4, 3, 8, 5, 0, 9, 0, 0, 2, 4, 9, 3, 5, 2, 5, 5, 7, 5, 9, 6, 2, 7, 3, 4, 1, 4, 5, 8, 9, 5, 0, 3, 7, 6, 9, 0, 6, 8, 0, 5, 2, 5, 5, 8, 2, 6, 3, 3, 7, 3, 4, 0, 7, 0, 6, 0, 3, 1, 6, 4, 1, 5, 8, 8, 6, 2, 5, 5, 8, 7, 8, 0, 3, 5, 8, 0, 6, 5, 6, 6
Offset: 1

Views

Author

Artur Jasinski, Dec 29 2023

Keywords

Comments

Also the Wolf-Kawalec constant of index 0.
For the Wolf-Kawalec constant of index 1 see A368547.
For the Wolf-Kawalec constant of index 2 see A368568.
Let g(n) be the Wolf-Kawalec constant of index n; then the function
zeta(x)/zeta(2*x) - 6/(Pi^2*(x-1))
has the expansion
Sum_{n>=0} (-1)^n*(g(n)/n!)*(x-1)^n
at x=1.

Examples

			1.0438945157119382974...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[6 EulerGamma/Pi^2 - 72 Zeta'[2]/Pi^4, 10, 105][[1]]

Formula

Equals (6/Pi^2)*(24*Glaisher - gamma - 2*log(2*Pi)) where Glaisher is A074962.
Equals lim_{x->oo} {(Sum_{n=1..x} abs(mu(n))/n) - 6*log(x)/Pi^2}.

A368568 Decimal expansion of the Wolf-Kawalec constant of index 2.

Original entry on oeis.org

3, 1, 9, 3, 8, 4, 1, 2, 0, 4, 0, 8, 0, 1, 4, 2, 4, 9, 2, 4, 9, 4, 6, 5, 2, 0, 7, 0, 7, 4, 5, 7, 2, 0, 1, 5, 2, 8, 1, 6, 1, 4, 2, 9, 2, 0, 2, 4, 7, 8, 3, 7, 2, 3, 8, 7, 0, 0, 2, 3, 0, 4, 9, 0, 5, 6, 0, 1, 4, 9, 0, 5, 6, 8, 4, 2, 6, 7, 7, 1, 3, 4, 1, 4, 6, 9, 7, 4, 3, 2, 4, 1, 1, 1, 4, 4, 5, 1, 9, 0, 6, 0, 2, 6, 5
Offset: 0

Views

Author

Artur Jasinski, Dec 30 2023

Keywords

Comments

For the Wolf-Kawalec constant of index 0 see A368551.
For the Wolf-Kawalec constant of index 1 see A368547.

Examples

			0.3193841204080142492494652...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Limit[D[D[Zeta[x]/Zeta[2 x] - 6/(Pi^2 (x - 1)), x], x], x -> 1],10,105][[1]]

Formula

Equals 6*(Pi^6*gamma_2 - 3456*(zeta'(2))^3 + 288*Pi^2*zeta'(2)*(gamma*zeta'(2) + 2*zeta''(2)) + 8*Pi^4*(3*gamma_1*zeta(2) - 3*gamma*zeta''(2) - 2*zeta'''(2)))/Pi^8 where gamma_2 is A086279.

A153517 Floor of reciprocal of Zeta'(n), where Zeta'(n) is the derivative of Riemann zeta function.

Original entry on oeis.org

-2, -6, -15, -35, -78, -166, -345, -707, -1435, -2899, -5835, -11721, -23507, -47101, -94318, -188791, -377786, -755845, -1512052, -3024587, -6049818, -12100492, -24202125, -48405772, -96813572, -193629847, -387263296
Offset: 2

Views

Author

Vladimir Reshetnikov, Dec 28 2008

Keywords

Examples

			Floor(1/Zeta'(2)) = -2.
		

Crossrefs

a(2) = floor(1/-A073002), a(3) = floor(1/-A244115), a(4) = floor(1/-A261506).

Programs

  • Mathematica
    Table[Floor[1/Zeta'[k]], {k, 2, 40}]
  • PARI
    a(n) = floor(1/zeta'(n)) \\ Iain Fox, Nov 08 2017
Previous Showing 31-40 of 59 results. Next