cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A242051 Decimal expansion of B, a constant appearing in the asymptotic number of integers the prime factorization of which has decreasing exponents.

Original entry on oeis.org

1, 8, 8, 7, 0, 2, 9, 9, 6, 5, 4, 3, 0, 8, 2, 5, 2, 7, 8, 2, 4, 8, 1, 3, 8, 1, 9, 6, 7, 9, 9, 5, 6, 9, 9, 1, 1, 5, 3, 7, 8, 6, 6, 2, 3, 8, 0, 8, 8, 4, 9, 9, 7, 8, 0, 3, 4, 8, 8, 3, 0, 4, 4, 7, 3, 8, 7, 0, 8, 9, 0, 9, 0, 5, 6, 0, 9, 1, 4, 2, 0, 5, 3, 2, 4, 6, 7, 2, 3, 9, 0, 5, 4, 9, 5, 6, 9, 0, 0, 2, 8, 9, 4, 8, 6
Offset: 1

Views

Author

Jean-François Alcover, Aug 13 2014

Keywords

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta'[2] - (Pi^2/6)*EulerGamma, 10, 105] // First
  • PARI
    default(realprecision, 100); zeta'(2) - zeta(2)*Euler \\ G. C. Greubel, Sep 06 2018

Formula

B = -integral_{y>0} log(1-e^(-y))*log(y) dy = zeta'(2) - (Pi^2/6)*gamma.

A271854 Decimal expansion of -zeta'(-1/2), negated derivative of the Riemann zeta function at -1/2.

Original entry on oeis.org

3, 6, 0, 8, 5, 4, 3, 3, 9, 5, 9, 9, 9, 4, 7, 6, 0, 7, 3, 4, 7, 4, 2, 0, 8, 0, 6, 3, 6, 3, 9, 5, 1, 0, 6, 5, 8, 8, 4, 8, 5, 2, 7, 8, 7, 9, 1, 8, 6, 3, 2, 2, 1, 0, 8, 1, 4, 3, 7, 6, 2, 8, 1, 2, 7, 5, 8, 0, 8, 1, 0, 6, 1, 2, 6, 6, 5, 6, 5, 1, 0, 3, 0, 9, 5, 7, 3, 3, 0, 8, 5, 0, 8, 3, 0, 9, 1, 6, 0, 2, 8, 5, 0, 8, 1
Offset: 0

Views

Author

Stanislav Sykora, Apr 23 2016

Keywords

Examples

			zeta'(-1/2) = -0.36085433959994760734742080636395106588485278791863221...
		

Crossrefs

Values of |zeta'(x)| for various x: A073002 (+2), A075700 (0), A084448 (-1), A114875 (+1/2), A240966 (-2), A244115(+3), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8), A261506 (+4), A266260 (-9), A266261 (-10), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)), A271521 (i).

Programs

  • Mathematica
    RealDigits[N[-Zeta'[-1/2], 106]] [[1]] (* Robert Price, Apr 28 2016 *)
  • PARI
    -zeta'(-1/2)

A273240 Decimal expansion of Integral_{0..inf} x log(x)/(exp(x)-1) dx (negated).

Original entry on oeis.org

2, 4, 2, 0, 9, 5, 8, 9, 8, 5, 8, 2, 5, 9, 8, 8, 4, 1, 7, 7, 5, 7, 2, 3, 0, 3, 0, 1, 5, 3, 5, 4, 4, 7, 2, 2, 3, 1, 8, 9, 1, 6, 3, 3, 6, 8, 8, 1, 7, 0, 1, 3, 4, 2, 6, 1, 3, 2, 7, 2, 2, 1, 8, 0, 1, 7, 0, 8, 1, 6, 2, 0, 1, 5, 7, 7, 1, 3, 3, 3, 1, 4, 9, 1, 0, 4, 3, 4, 8, 9, 9, 2, 9, 8, 1, 0, 2, 9, 7, 5, 9
Offset: 0

Views

Author

Jean-François Alcover, May 18 2016

Keywords

Examples

			-0.242095898582598841775723030153544722318916336881701342613272218...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/6) Pi^2 (1 + Log[2Pi] - 12 Log[Glaisher]), 10, 101][[1]]
  • PARI
    default(realprecision, 100); (1/6)*(1-Euler)*Pi^2 + zeta'(2) \\ G. C. Greubel, Sep 07 2018

Formula

Equals (1/6)*(1-EulerGamma)*Pi^2+zeta'(2).
Also equals (1/6)*Pi^2*(1+log(2*Pi)-12*log(G)), where G is the Glaisher-Kinkelin constant.

A335006 Decimal expansion of gamma - zeta'(2)/zeta(2), where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 1, 4, 7, 1, 7, 6, 6, 5, 7, 9, 9, 6, 0, 6, 5, 6, 6, 7, 0, 0, 6, 3, 7, 6, 4, 5, 0, 1, 0, 2, 1, 3, 2, 4, 3, 3, 4, 4, 5, 6, 4, 1, 6, 1, 6, 7, 4, 6, 8, 5, 4, 5, 7, 8, 3, 6, 3, 9, 6, 4, 5, 9, 5, 3, 2, 2, 7, 8, 5, 0, 0, 4, 1, 4, 4, 4, 0, 5, 2, 7, 7, 7, 2, 4, 8, 1
Offset: 1

Views

Author

Amiram Eldar, May 19 2020

Keywords

Examples

			1.1471766579960656670063764501021324334456416167468...
		

Crossrefs

Cf. A000010 (phi), A001620 (gamma), A013661 (zeta(2)), A073002 (-zeta'(2)).

Programs

  • Mathematica
    RealDigits[EulerGamma - Zeta'[2]/Zeta[2], 10, 100][[1]]
  • PARI
    Euler - zeta'(2)/zeta(2) \\ Michel Marcus, May 19 2020

Formula

Equals lim_{k->oo} zeta(2) * Sum_{i=1..k} phi(i)/i^2 - log(k), where phi is the Euler totient function (A000010).

A343481 a(n) is the sum of all digits of n in every prime base 2 <= p <= n.

Original entry on oeis.org

1, 3, 3, 6, 6, 10, 11, 11, 10, 15, 16, 22, 21, 21, 23, 30, 32, 40, 42, 42, 39, 48, 52, 53, 49, 52, 53, 63, 66, 77, 83, 82, 76, 77, 82, 94, 87, 85, 90, 103, 107, 121, 123, 129, 120, 135, 144, 147, 153, 150, 151, 167, 176, 178, 185, 181, 168, 185, 194, 212, 199
Offset: 2

Views

Author

Amiram Eldar, Apr 16 2021

Keywords

Examples

			a(5) = 6 since in the prime bases 2, 3 and 5 the representations of 5 are 101_2, 12_3 and 10_5, respectively, and (1 + 0 + 1) + (1 + 2) + (1 + 0) = 6.
		

Crossrefs

Programs

  • Mathematica
    s[n_, b_] := Plus @@ IntegerDigits[n, b]; ps[n_] := Select[Range[n], PrimeQ]; a[n_] := Sum[s[n, b], {b, ps[n]}]; Array[a, 100, 2]
  • PARI
    a(n) = sum(b=2, n, if (isprime(b), sumdigits(n, b))); \\ Michel Marcus, Apr 17 2021

Formula

a(n) ~ (1-Pi^2/12)*n^2/log(n) + c*n^2/log(n)^2 + o(n^2/log(n)^2), where c = 1 - Pi^2/24 + zeta'(2)/2 = 1 - A222171 - (1/2)*A073002 = 0.1199923561... (Fissum, 2020).

A345726 a(n) = Product_{k=1..n} k^(floor(n/k)^2).

Original entry on oeis.org

1, 2, 6, 192, 960, 4976640, 34836480, 2283043553280, 4993016251023360, 3195530400654950400000, 35150834407204454400000, 417877827219530751882239882035200000, 5432411753853899774469118466457600000, 213700126654516647665669790727613605478400000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 25 2021

Keywords

Crossrefs

Programs

  • Magma
    [(&*[j^(Floor(n/j))^2: j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 05 2024
    
  • Mathematica
    Table[Product[k^(Floor[n/k]^2), {k, 1, n}], {n, 1, 15}]
  • PARI
    a(n) = prod(k=1, n, k^((n\k)^2)); \\ Michel Marcus, Jun 26 2021
    
  • SageMath
    [product(j^((n//j)^2) for j in range(1,n+1)) for n in range(1,31)] # G. C. Greubel, Feb 05 2024

Formula

log(a(n)) ~ c * n^2, where c = -zeta'(2) = A073002.

A349694 Dirichlet convolution of the squarefree kernel function (A007947) with itself.

Original entry on oeis.org

1, 4, 6, 8, 10, 24, 14, 12, 15, 40, 22, 48, 26, 56, 60, 16, 34, 60, 38, 80, 84, 88, 46, 72, 35, 104, 24, 112, 58, 240, 62, 20, 132, 136, 140, 120, 74, 152, 156, 120, 82, 336, 86, 176, 150, 184, 94, 96, 63, 140, 204, 208, 106, 96, 220, 168, 228, 232, 118, 480
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Last[Select[Divisors[d], SquareFreeQ]] Last[Select[Divisors[n/d], SquareFreeQ]], {d, Divisors[n]}], {n, 1, 60}]
    f[p_, e_] := (e - 1)*p^2 + 2*p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A349694(n) = sumdiv(n,d,A007947(n/d)*A007947(d)); \\ Antti Karttunen, Nov 25 2021

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + p^(1-s) - p^(-s))^2.
a(n) = Sum_{d|n} A007947(d) * A007947(n/d).
a(n) = Sum_{d|n} abs(A097945(d)) * A191750(n/d).
Multiplicative with a(p^e) = (e-1)*p^2 + 2*p. - Amiram Eldar, Nov 25 2021
From Vaclav Kotesovec, Nov 26 2021: (Start)
Dirichlet g.f.: zeta(s-1)^2 * zeta(s)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))^2.
Let f(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)), then
Sum_{k=1..n} a(k) ~ Pi^2 * f(2)^2 * n^2 / 144 * (Pi^2 * (2*log(n) + 4*gamma - 1 + 4*f'(2)/f(2)) + 24*zeta'(2)), where f(2) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298513355936144..., f'(2) = f(2) * Sum_{primes p} log(p) * (3*p - 2) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407300858..., zeta'(2) = -A073002 and gamma is the Euler-Mascheroni constant A001620. (End)

A365207 The number of divisors d of n such that gcd(d, n/d) is a power of 2 (A000079).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 2, 4, 2, 6, 2, 4, 4, 5, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 2, 6, 2, 8, 2, 6, 4, 4, 4, 6, 2, 4, 4, 8, 2, 8, 2, 6, 4, 4, 2, 10, 2, 4, 4, 6, 2, 4, 4, 8, 4, 4, 2, 12, 2, 4, 4, 7, 4, 8, 2, 6, 4, 8, 2, 8, 2, 4, 4, 6, 4, 8, 2, 10, 2, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

The sum of these divisors is A107749(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, e + 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, f[i,2]+1, 2));}

Formula

Multiplicative with a(2^e) = e+1 and a(p^e) = 2 for an odd prime p.
a(n) <= A000005(n), with equality if and only if n is in A122132 (or equivalently, n is not in A038838).
a(n) >= A034444(n), with equality if and only if n is not divisible by 4 (A042968).
a(n) = A000005(A006519(n)) * A034444(A000265(n)).
a(n) = A034444(n) * (A007814(n)+1)/2^(1 - (n mod 2)).
Dirichlet g.f.: (4^s/(4^s-1)) * zeta(s)^2/zeta(2*s).
Sum_{k==1..n} a(k) ~ (8/Pi^2)*n*(log(n) + 2*gamma - 2*log(2)/3 - 2*zeta'(2)/zeta(2) - 1), where gamma is Euler's constant (A001620).

A375368 Decimal expansion of zeta'(2)/(2*Pi^2) + log(2*Pi)/6 - gamma/12.

Original entry on oeis.org

2, 1, 0, 7, 1, 4, 7, 8, 9, 5, 6, 8, 5, 5, 2, 1, 0, 8, 3, 4, 2, 9, 1, 1, 8, 7, 4, 6, 2, 6, 6, 9, 4, 8, 4, 3, 8, 3, 3, 3, 2, 9, 0, 2, 3, 1, 5, 0, 3, 5, 6, 5, 8, 9, 4, 0, 8, 7, 2, 0, 1, 3, 0, 5, 5, 0, 6, 8, 9, 8, 1, 4, 9, 6, 3, 7, 1, 9, 6, 9, 2, 7, 5, 4, 5, 1, 3, 2, 1
Offset: 0

Views

Author

R. J. Mathar, Aug 13 2024

Keywords

Comments

zeta'(2) = -0.9375.. is the first derivative of the zeta function (see A073002). Gamma is A001620.

Examples

			0.21071478956855210834291187462669484383332902315035...
		

Crossrefs

Programs

  • Maple
    Zeta(1,2)/2/Pi^2+log(2*Pi)/6-gamma/12 ; evalf(%) ;
  • Mathematica
    RealDigits[Zeta'[2] / (2*Pi^2) + Log[2*Pi] / 6 - EulerGamma / 12, 10, 120][[1]] (* Amiram Eldar, Aug 19 2024 *)

Formula

Equals Integral_{x=0..1} x* log(Gamma(x)) dx.
Equals log(A367842). - Hugo Pfoertner, Aug 19 2024

A375369 Decimal expansion of zeta'(2)/(2*Pi^2) + zeta(3)/(4*Pi^2) + log(2*Pi)/12 -gamma/12.

Original entry on oeis.org

0, 8, 8, 0, 0, 6, 8, 2, 4, 4, 2, 6, 1, 6, 6, 5, 8, 8, 8, 2, 6, 4, 4, 1, 7, 8, 2, 3, 6, 3, 5, 8, 0, 0, 1, 3, 8, 3, 6, 7, 6, 3, 2, 6, 1, 0, 8, 9, 0, 3, 3, 2, 9, 0, 1, 9, 2, 1, 6, 6, 7, 6, 3, 6, 6, 2, 6, 0, 0, 0, 1, 6, 9, 2, 0, 7, 7, 9, 8, 5, 8, 4, 8, 3, 1, 8, 3
Offset: 0

Views

Author

R. J. Mathar, Aug 13 2024

Keywords

Comments

zeta'(2)= -0.9375.. is the first derivative of the zeta function, see A073002. gamma is A001620.

Examples

			0.08800682442616658882644178236358001383676326108903...
		

Crossrefs

Programs

  • Maple
    Zeta(1,2)/2/Pi^2+Zeta(3)/4/Pi^2+log(2*Pi)/12-gamma/12 ; evalf(%) ;
  • Mathematica
    RealDigits[Zeta'[2] / (2*Pi^2) + Zeta[3] / (4*Pi^2) + Log[2*Pi] / 12 - EulerGamma / 12, 10, 120, -1][[1]] (* Amiram Eldar, Aug 19 2024 *)

Formula

Equals Integral_{x=0..1} x^2* log(Gamma(x)) dx.
Previous Showing 41-50 of 59 results. Next