cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 58 results. Next

A261850 Decimal expansion of the central binomial sum S(6), where S(k) = Sum_{n>=1} 1/(n^k binomial(2n,n)).

Original entry on oeis.org

5, 0, 2, 6, 7, 6, 5, 2, 1, 4, 7, 8, 2, 6, 9, 2, 8, 6, 4, 5, 4, 6, 7, 7, 4, 5, 9, 9, 7, 9, 3, 4, 8, 6, 3, 9, 6, 6, 4, 6, 0, 2, 6, 0, 0, 0, 9, 1, 6, 4, 0, 6, 6, 1, 4, 6, 8, 6, 2, 7, 6, 5, 2, 3, 2, 4, 8, 7, 1, 6, 1, 5, 0, 8, 8, 5, 4, 6, 3, 1, 2, 1, 1, 7, 6, 2, 3, 4, 1, 5, 7, 2, 7, 8, 4, 0, 5, 2, 7, 6, 7, 8, 5, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2015

Keywords

Examples

			0.50267652147826928645467745997934863966460260009164...
		

Crossrefs

Cf. A073010 (S(1)), A086463 (S(2)), A145438 (S(3)), A086464 (S(4)), A261839 (S(5)), A261851 (S(7)), A261852 (S(8)).

Programs

  • Mathematica
    S[6] = Sum[1/(n^6*Binomial[2n, n]), {n, 1, Infinity}]; RealDigits[S[6], 10, 105]//First

Formula

Equals (1/2) 7F6(1,1,1,1,1,1,1; 3/2,2,2,2,2,2; 1/4).
Also equals (2/3)*Integral_{0..Pi/3} t*log(2*sin(t/2))^4 dt.

A261851 Decimal expansion of the central binomial sum S(7), where S(k) = Sum_{n>=1} 1/(n^k binomial(2n,n)).

Original entry on oeis.org

5, 0, 1, 3, 2, 5, 8, 7, 2, 6, 8, 8, 1, 7, 8, 8, 0, 9, 4, 0, 2, 2, 9, 6, 7, 1, 0, 5, 5, 2, 7, 4, 9, 4, 4, 3, 7, 2, 6, 8, 7, 8, 3, 2, 9, 8, 5, 8, 0, 4, 5, 6, 8, 1, 5, 3, 6, 4, 5, 1, 2, 1, 7, 3, 3, 8, 8, 8, 7, 4, 1, 5, 8, 4, 5, 0, 6, 0, 6, 5, 3, 3, 0, 9, 0, 3, 1, 1, 3, 8, 8, 9, 7, 9, 4, 3, 9, 8, 9, 6, 1, 8, 1, 9, 4
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2015

Keywords

Examples

			0.501325872688178809402296710552749443726878329858...
		

Crossrefs

Cf. A073010 (S(1)), A086463 (S(2)), A145438 (S(3)), A086464 (S(4)), A261839 (S(5)), A261850 (S(6)), A261852 (S(8)).

Programs

  • Mathematica
    S[7]=-6*Pi*Im[-PolyLog[6, (-1)^(1/3)]] + (17*Pi^4*Zeta[3])/1620 + (1/3)*Pi^2*Zeta[5] - (493*Zeta[7])/24; RealDigits[S[7], 10, 105]//First

Formula

Equals (1/2) 8F7(1,...,1; 3/2,2,...,2; 1/4).
Also equals -6*Pi*Im(-PolyLog(6, (-1)^(1/3))) + (17*Pi^4*zeta(3))/1620 + (1/3)*Pi^2*zeta(5) - (493*zeta(7))/24.

A261852 Decimal expansion of the central binomial sum S(8), where S(k) = Sum_{n>=1} 1/(n^k binomial(2n,n)).

Original entry on oeis.org

5, 0, 0, 6, 5, 8, 8, 9, 1, 2, 9, 7, 6, 7, 0, 5, 4, 3, 3, 1, 4, 5, 5, 7, 1, 2, 7, 0, 8, 2, 9, 8, 6, 8, 3, 8, 3, 8, 4, 0, 7, 3, 2, 5, 2, 3, 4, 0, 4, 5, 4, 0, 3, 8, 8, 8, 8, 6, 4, 3, 8, 0, 4, 7, 6, 6, 2, 1, 7, 1, 8, 2, 0, 3, 3, 4, 1, 3, 5, 8, 7, 6, 5, 4, 5, 6, 6, 2, 7, 0, 9, 0, 8, 1, 5, 1, 6, 7, 7, 2
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2015

Keywords

Examples

			0.5006588912976705433145571270829868383840732523404540388886438...
		

Crossrefs

Cf. A073010 (S(1)), A086463 (S(2)), A145438 (S(3)), A086464 (S(4)), A261839 (S(5)), A261850 (S(6)), A261851 (S(7)).

Programs

  • Mathematica
    S[8] = Sum[1/(n^8*Binomial[2n, n]), {n, 1, Infinity}]; RealDigits[S[8], 10, 100] // First

Formula

Equals (1/2) 8F7(1,...,1; 3/2,2,...,2; 1/4).
Also equals (4/45)*Integral_{0..Pi/3} t*log(2*sin(t/2))^6 dt.

A263498 Decimal expansion of the Gaussian Hypergeometric Function 2F1(1, 3; 5/2; x) at x=1/4.

Original entry on oeis.org

1, 4, 1, 8, 3, 9, 9, 1, 5, 2, 3, 1, 2, 2, 9, 0, 4, 6, 7, 4, 5, 8, 7, 7, 1, 0, 1, 0, 1, 8, 9, 5, 4, 0, 9, 7, 6, 3, 7, 8, 7, 5, 4, 9, 9, 7, 4, 5, 6, 9, 8, 7, 4, 3, 4, 0, 9, 3, 1, 7, 9, 9, 1, 3, 8, 5, 0, 8, 3, 0, 9, 0, 8, 1, 6, 8, 4, 7, 1, 8, 4, 4, 9, 1, 2, 1, 6, 6, 6, 5, 0, 9, 4, 9, 4, 1
Offset: 1

Views

Author

R. J. Mathar, Oct 19 2015

Keywords

Comments

Division through 3 gives 0.472799.. = integral_{x=0..infinity} x^2*I_1(x)*K_1(x)^2 dx, where I and K are Modified Bessel Functions.

Examples

			1.41839915231229046745877101018954097637875499745698743409317991385...
		

Crossrefs

Cf. A073010.

Programs

Formula

Equals 4*Pi/3^(3/2) - 1. - Vaclav Kotesovec, Apr 10 2016

A273989 Decimal expansion of the odd Bessel moment t(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

Original entry on oeis.org

6, 6, 0, 3, 4, 4, 8, 6, 9, 0, 1, 8, 6, 7, 2, 3, 5, 7, 8, 3, 7, 2, 6, 6, 8, 3, 1, 7, 0, 5, 9, 9, 4, 2, 6, 3, 8, 5, 4, 2, 4, 1, 9, 9, 1, 6, 9, 6, 8, 7, 3, 8, 5, 8, 3, 0, 0, 8, 0, 3, 5, 8, 7, 5, 5, 3, 8, 9, 4, 9, 5, 8, 6, 8, 3, 7, 9, 9, 4, 4, 5, 4, 1, 0, 9, 8, 1, 0, 7, 2, 0, 1, 2, 1, 7, 5, 3, 2, 7, 6, 8, 4, 2, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 06 2016

Keywords

Examples

			0.660344869018672357837266831705994263854241991696873858300803587553894...
		

Crossrefs

Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273990 (t(5,3)), A273991 (t(5,5)).

Programs

  • Mathematica
    t[5, 1] = NIntegrate[x*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 105]; RealDigits[t[5, 1]][[1]]
    (* or: *)
    t[5, 1] = 4(7 - 4*Sqrt[3]) EllipticK[1 - 32/(16 + 7*Sqrt[3] - Sqrt[15])] EllipticK[1 - 32/(16 + 7*Sqrt[3] + Sqrt[15])]; RealDigits[t[5, 1], 10, 105][[1]]
    RealDigits[EllipticK[(16 - 7 Sqrt[3] - Sqrt[15])/32] EllipticK[(16 - 7 Sqrt[3] + Sqrt[15])/32]/4, 10, 105][[1]] (* Jan Mangaldan, Jan 06 2017 *)

Formula

Integral_{0..inf} x*BesselI_0(x)^2*BesselK_0(x)^3.
Equals 4(7 - 4*sqrt(3)) EllipticK(1 - 32/(16 + 7*sqrt(3) - sqrt(15))) EllipticK(1 - 32/(16 + 7*sqrt(3) + sqrt(15))).

A273990 Decimal expansion of the odd Bessel moment t(5,3) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

Original entry on oeis.org

2, 5, 2, 2, 5, 3, 9, 4, 4, 8, 9, 7, 8, 4, 1, 9, 6, 5, 9, 9, 4, 5, 0, 9, 6, 1, 2, 5, 5, 5, 0, 9, 0, 4, 0, 8, 7, 7, 5, 0, 6, 8, 4, 5, 0, 7, 5, 5, 9, 7, 0, 0, 9, 9, 9, 2, 0, 6, 5, 9, 3, 0, 9, 4, 5, 2, 8, 9, 7, 1, 0, 2, 0, 7, 4, 1, 9, 8, 6, 0, 5, 9, 0, 8, 1, 5, 6, 3, 5, 4, 9, 5, 9, 6, 5, 1, 7, 4, 1, 1, 9, 2, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 06 2016

Keywords

Examples

			0.252253944897841965994509612555090408775068450755970099920659309452897...
		

Crossrefs

Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273989 (t(5,1)), A273991 (t(5,5)).

Programs

  • Mathematica
    t[5, 3] = NIntegrate[x^3*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 104];
    RealDigits[t[5, 3]][[1]]
    (* or: *)
    K[k_] := EllipticK[k^2/(-1+k^2)]/Sqrt[1-k^2];
    D0[y_] := (4*y*K[Sqrt[((1-3*y)*(1+y)^3)/((1+3*y)*(1-y)^3)]])/Sqrt[(1+3*y)* (1-y)^3];
    t[5, 3] = NIntegrate[4y^2*(1-2y^2+4y^4)*D0[y]/(1-4y^2)^(5/2), {y, 0, 1/3}, WorkingPrecision -> 104];
    RealDigits[t[5, 3]][[1]]

Formula

Integral_{0..inf} x*BesselI_0(x)^2*BesselK_0(x)^3.

A273991 Decimal expansion of the odd Bessel moment t(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

Original entry on oeis.org

1, 0, 4, 3, 2, 9, 7, 3, 6, 7, 3, 8, 6, 8, 7, 1, 3, 4, 4, 9, 1, 8, 9, 3, 1, 6, 0, 7, 8, 9, 4, 7, 7, 1, 2, 2, 1, 7, 5, 6, 6, 1, 6, 3, 3, 1, 2, 2, 6, 9, 1, 5, 5, 7, 8, 8, 6, 8, 8, 3, 2, 5, 5, 8, 9, 8, 6, 6, 2, 7, 1, 0, 9, 6, 4, 3, 9, 2, 2, 0, 2, 2, 6, 7, 7, 4, 2, 1, 1, 5, 0, 6, 3, 5, 6, 8, 4, 2, 6, 1, 0, 8, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 06 2016

Keywords

Examples

			1.0432973673868713449189316078947712217566163312269155788688325589866...
		

Crossrefs

Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273989 (t(5,1)), A273990 (t(5,3)).

Programs

  • Mathematica
    t[5, 5] = NIntegrate[x^5*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 103];
    RealDigits[t[5, 5]][[1]]

Formula

Integral_{0..inf} x^5*BesselI_0(x)^2*BesselK_0(x)^3.
Conjecture: Equals 76/15 t(5,3) - 16/45 t(5,1).

A306712 Decimal expansion of 3*sqrt(3)/Pi.

Original entry on oeis.org

1, 6, 5, 3, 9, 8, 6, 6, 8, 6, 2, 6, 5, 3, 7, 6, 1, 4, 8, 5, 3, 3, 9, 7, 9, 4, 9, 4, 9, 3, 8, 9, 0, 8, 3, 2, 4, 1, 9, 2, 1, 5, 9, 4, 4, 1, 0, 9, 9, 9, 2, 1, 9, 5, 8, 3, 9, 8, 0, 9, 8, 0, 6, 0, 8, 7, 3, 0, 9, 0, 9, 1, 0, 4, 0, 7, 8, 0, 9, 3, 8, 4, 5, 2, 1, 1, 4, 0, 0, 8, 6, 4, 6, 9, 5, 1, 2, 6, 6, 7, 6
Offset: 1

Views

Author

Scott R. Shannon, Mar 05 2019

Keywords

Comments

This is the mean end-to-end distance of the 2-step self-avoiding walk with full excluded volume in the 2-dimensional continuum.
Take 3 touching circles of diameter 1 which are joined as a chain and each is free to move around its neighbors' perimeters, but no circle can overlap another. This value is the average of the distance from the middle of the first circle to the middle of the third circle, averaged over all possible configurations the chain of 3 non-overlapping circles can take.
Using the law of cosines one can show the distance between the middle of the first and third circles, r_3, in the 3-circle chain is r_3 = sqrt(2-2*cos(t)), where t is the angle between these circles centered on the second circle. The mean end-to-end distance is thus given by the integral = Integrate(r_3,{t,Pi/3,5*Pi/3})/(4*Pi/3), which includes division by the required normalization constant. Solving this definite integral gives the exact value for as 3*sqrt(3)/Pi. This is A289504 minus 2.
Removing the square root from r_3 in the above integral gives the mean square end-to-end distance for the 2-step walk. Evaluating this integral gives the exact value for as 2+3*sqrt(3)/(2*Pi), with a value of approximately 2.826993343... . This is A086089 plus 2, or equivalently this sequence divided by 2, plus 2.

Examples

			1.653986686265376148533979494938908324192159441099921958398...
		

Crossrefs

Cf. A306648, A086089, A289504, A073010 (reciprocal).

Programs

  • Mathematica
    RealDigits[3*Sqrt[3]/Pi, 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)
  • PARI
    3*sqrt(3)/Pi

Extensions

Terms a(59) and beyond from Andrew Howroyd, Apr 27 2020

A373507 Decimal expansion of 1/2 - sqrt(3)*Pi/18.

Original entry on oeis.org

1, 9, 7, 7, 0, 0, 1, 0, 5, 9, 6, 0, 9, 6, 3, 6, 9, 1, 5, 6, 7, 6, 5, 3, 6, 2, 3, 7, 2, 6, 3, 0, 7, 3, 7, 7, 9, 5, 2, 6, 5, 5, 6, 2, 5, 3, 1, 7, 8, 7, 6, 5, 7, 0, 7, 3, 8, 3, 5, 2, 5, 1, 0, 7, 6, 8, 6, 4, 6, 1, 3, 6, 4, 7, 8, 9, 4, 1, 0, 1, 9, 3, 8, 5, 9, 7
Offset: 0

Views

Author

R. J. Mathar, Jun 07 2024

Keywords

Examples

			0.1977001059609636915676536237263...
		

Crossrefs

Cf. A373508 (denominator (n-1)^2), A373506 (denominator n+1), A073010 (denominator n).

Programs

  • Maple
    1/2-sqrt(3)*Pi/18; evalf(%) ;
  • Mathematica
    RealDigits[1/2 - Sqrt[3]*Pi/18, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    1/2 - sqrt(3)*Pi/18 \\ Amiram Eldar, Jun 10 2024

Formula

Equals Sum_{n>=2} 1/((n-1)*binomial(2n,n)).
Sum_{n>=2} (-1)^n/((n-1)*binomial(2n,n)) = 3*log(phi)/sqrt(5) - 1/2 = 0.145613... where phi is the golden ratio.

A381672 Decimal expansion of the isoperimetric quotient of a regular icosahedron.

Original entry on oeis.org

8, 2, 8, 7, 9, 7, 7, 1, 9, 2, 5, 2, 0, 1, 2, 0, 2, 1, 5, 0, 0, 5, 8, 1, 0, 0, 3, 8, 1, 2, 9, 6, 3, 5, 7, 5, 8, 6, 1, 7, 8, 3, 0, 3, 0, 8, 7, 2, 3, 3, 8, 2, 6, 7, 7, 4, 6, 4, 0, 7, 0, 4, 6, 1, 9, 3, 7, 9, 8, 9, 9, 5, 0, 2, 1, 0, 8, 1, 9, 4, 0, 5, 9, 0, 0, 8, 8, 0, 5, 8
Offset: 0

Views

Author

Paolo Xausa, Mar 03 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, see A381671.

Examples

			0.8287977192520120215005810038129635758617830308723...
		

Crossrefs

Cf. A273637 (sphericity).
Cf. isoperimetric quotient of other Platonic solids: A019673 (cube), A073010 (octahedron), A374772 (dodecahedron), A381671 (tetrahedron).

Programs

  • Mathematica
    First[RealDigits[Pi*GoldenRatio^4/(15*Sqrt[3]), 10, 100]]

Formula

Equals Pi*phi^4/(15*sqrt(3)) = A000796*A374883/(15*A002194).
Previous Showing 41-50 of 58 results. Next