A364339
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^6).
Original entry on oeis.org
1, 2, 13, 150, 1978, 28603, 438273, 6992052, 114915180, 1932233883, 33081722359, 574755965137, 10107627041697, 179576579730534, 3218352405778284, 58114340679967608, 1056284029850962674, 19310039426151335622, 354818596435147647654, 6549556302551204621664, 121394125733645986376838
Offset: 0
-
terms = 21; A[] = 0; Do[A[x] = (1+x)(1+x*A[x]^6) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Mar 24 2025 *)
-
a(n) = sum(k=0, n, binomial(6*k+1, k)*binomial(6*k+1, n-k)/(6*k+1));
A215715
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^4).
Original entry on oeis.org
1, 2, 13, 118, 1242, 14227, 172177, 2165732, 28032668, 370944717, 4995412647, 68239105203, 943278064473, 13169938895473, 185453340189492, 2630813161415976, 37561512615867450, 539336703889993006, 7783290731579783544, 112828761898680983141, 1642222504807143423470
Offset: 0
G.f.: A(x) = 1 + 2*x + 13*x^2 + 118*x^3 + 1242*x^4 + 14227*x^5 + ...
Related expansions.
A(x)^2 = 1 + 4*x + 30*x^2 + 288*x^3 + 3125*x^4 + 36490*x^5 + ...
A(x)^4 = 1 + 8*x + 76*x^2 + 816*x^3 + 9454*x^4 + 115260*x^5 + ...
A(x)^6 = 1 + 12*x + 138*x^2 + 1648*x^3 + 20427*x^4 + 260934*x^5 + ...
where A(x) = 1 + x*(A(x)^2 + A(x)^4) + x^2*A(x)^6.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x*A(x) + (1 + 2^2*A(x)^2 + A(x)^4)*x^2*A(x)^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3*A(x)^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4*A(x)^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5*A(x)^5/5 + ...
Explicitly,
log(A(x)) = 2*x + 22*x^2/2 + 284*x^3/3 + 3878*x^4/4 + 54607*x^5/5 + 784144*x^6/6 + 11414265*x^7/7 + 167819014*x^8/8 + ...
-
CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1+Sqrt[1-4*x*(1+x)^2])^2/(4*(1+x)^2),{x,0,20}],x]],x] (* Vaclav Kotesovec, Sep 17 2013 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^4)); polcoeff(A, n)}
for(n=0,31,print1(a(n),", "))
-
{a(n)=polcoeff( sqrt((1/x)*serreverse( x*(1 + sqrt(1 - 4*x*(1+x)^2 +x*O(x^n)))^2/(4*(1+x)^2))), n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^(2*j))*x^m*A^m/m))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^(2*j))*x^m*A^(3*m)/m))); polcoeff(A, n)}
A364331
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 15, 163, 2070, 28698, 421015, 6425644, 100977137, 1622885389, 26551709946, 440744175801, 7404449354076, 125657625548824, 2150963575012295, 37094953102567208, 643904274979347286, 11241232087809137759, 197247501440314516840, 3476787208220672891388, 61533794803235280779261
Offset: 0
-
A364331 := proc(n)
add( binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k)/(2*n+3*k+1),k=0..n) ;
end proc:
seq(A364331(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));
A364371
G.f. satisfies A(x) = (1 + x) * (1 - x*A(x)^2).
Original entry on oeis.org
1, 0, -1, 2, -2, -1, 9, -20, 20, 24, -150, 327, -293, -599, 3097, -6452, 4854, 15878, -71252, 140112, -81328, -437346, 1746254, -3214989, 1223971, 12345295, -44552833, 76242173, -11292089, -354175849, 1167638037, -1842585992, -233903034, 10273377388, -31169512310
Offset: 0
-
A364371 := proc(n)
add((-1)^k* binomial(2*k+1,k) * binomial(2*k+1,n-k)/(2*k+1),k=0..n) ;
end proc:
seq(A364371(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
a(n) = sum(k=0, n, (-1)^k*binomial(2*k+1, k)*binomial(2*k+1, n-k)/(2*k+1));
A073153
Triangle of numbers relating two sequences A073155 and A073156.
Original entry on oeis.org
1, 1, 2, 4, 5, 9, 14, 18, 22, 36, 56, 70, 86, 100, 156, 237, 293, 349, 405, 461, 698, 1046, 1283, 1507, 1703, 1927, 2164, 3210, 4762, 5808, 6756, 7540, 8324, 9272, 10318, 15080, 22198, 26960, 31144, 34462, 37598, 40916, 45100, 49862, 72060, 105430, 127628
Offset: 0
T(4,0) = T(3,3) + 2*T(2,2) + T(1,1) = 2 + 2*9 + 36 = 56.
T(5,2) = A073155(0)*A073155(5) + A073155(1)*A073155(4) + A073155(2)*A073155(3) = 1*237 + 1*56 + 4*14 = 349.
Triangle begins:
1;
1, 2;
4, 5, 9;
14, 18, 22, 36;
56, 70, 86, 100, 156;
237, 293, 349, 405, 461, 698;
1046, 1283, 1507, 1703, 1927, 2164, 3210; ...
A366326
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^2).
Original entry on oeis.org
1, 2, -3, 14, -78, 479, -3131, 21372, -150588, 1087057, -7998295, 59763129, -452257495, 3459109408, -26697940390, 207672518808, -1626400971710, 12813379464399, -101482102525511, 807524595076284, -6452856224076654, 51760509258982478, -416620859045829372
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(n+k-2, n-k)/(3*k-1));
A073156
Main diagonal sequence of triangle A073153.
Original entry on oeis.org
1, 2, 9, 36, 156, 698, 3210, 15080, 72060, 349184, 1711869, 8475494, 42318018, 212843826, 1077391794, 5484472880, 28058940086, 144195777552, 744017466318, 3852968380624, 20019113126120, 104329129258596, 545214946753377
Offset: 0
-
a(n, r=2, s=2, t=2, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 07 2024
A137634
Square array where T(n,k) = Sum_{j=0..k} C(n+2*j,j)*C(n+2*j,k-j), read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 4, 10, 1, 6, 19, 46, 1, 8, 32, 94, 226, 1, 10, 49, 170, 474, 1136, 1, 12, 70, 282, 899, 2431, 5810, 1, 14, 95, 438, 1577, 4764, 12609, 30080, 1, 16, 124, 646, 2600, 8701, 25318, 65972, 157162, 1, 18, 157, 914, 4076, 15000, 47682, 134964, 347524, 826992
Offset: 0
Square array begins:
1, 2, 10, 46, 226, 1136, 5810, 30080, 157162, ...;
1, 4, 19, 94, 474, 2431, 12609, 65972, 347524, ...;
1, 6, 32, 170, 899, 4764, 25318, 134964, 721562, ...;
1, 8, 49, 282, 1577, 8701, 47682, 260384, 1419436, ...;
1, 10, 70, 438, 2600, 15000, 85102, 477808, 2664539, ...;
1, 12, 95, 646, 4076, 24643, 145099, 839620, 4800849, ...;
1, 14, 124, 914, 6129, 38868, 237842, 1420660, 8342297, ...;
1, 16, 157, 1250, 8899, 59201, 376740, 2325088, 14036647, ...; ...
-
{T(n,k)=sum(j=0,k,binomial(n+2*j,j)*binomial(n+2*j,k-j))} /* Using the g.f.: */ {T(n,k)=local(Oy=y*O(y^(n+k))); polcoeff(polcoeff(1/sqrt(1-4*y*(1+y)^2+Oy)* 1/(1-x*((1-sqrt(1-4*y*(1+y)^2+Oy))/(2*y*(1 + y+Oy))+x*O(x^n))),n,x),k,y)}
A364333
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^6).
Original entry on oeis.org
1, 2, 17, 216, 3224, 52640, 910452, 16392140, 303996224, 5767278431, 111401778266, 2183535060362, 43319505976084, 868220464851417, 17552981176788200, 357544690982030744, 7330803752675100908, 151172599088871911072, 3133367418601958989295, 65242183918761533467216
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+4*k+1, k)*binomial(2*n+4*k+1, n-k)/(2*n+4*k+1));
A366325
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)).
Original entry on oeis.org
1, 2, -1, 3, -10, 36, -137, 543, -2219, 9285, -39587, 171369, -751236, 3328218, -14878455, 67030785, -304036170, 1387247580, -6363044315, 29323149825, -135700543190, 630375241380, -2938391049395, 13739779184085, -64430797069375, 302934667061301, -1427763630578197
Offset: 0
-
a := proc(n) option remember; if n = 1 then 2 elif n = 2 then -1 else (-3*(2*n - 3)*a(n-1) - 5*(n - 3)*a(n-2))/n fi; end:
seq(a(n), n = 1..30); # Peter Bala, Sep 10 2024
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(n-2, n-k)/(2*k-1));
Comments