cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A093589 Decimal expansion of e^(2*e).

Original entry on oeis.org

2, 2, 9, 6, 5, 1, 6, 6, 4, 0, 8, 3, 5, 2, 4, 1, 3, 2, 5, 0, 9, 9, 2, 9, 5, 8, 8, 7, 9, 6, 4, 4, 4, 3, 4, 1, 2, 3, 1, 5, 9, 9, 5, 8, 5, 9, 3, 1, 8, 5, 0, 7, 6, 2, 5, 1, 4, 4, 5, 4, 1, 4, 3, 3, 6, 3, 6, 9, 8, 9, 7, 8, 1, 1, 6, 1, 7, 3, 6, 1, 8, 6, 4, 3, 9, 7, 4, 5, 2, 6, 6, 9, 1, 4, 6, 4, 9, 6, 3, 5, 1, 1, 8, 6, 4
Offset: 3

Views

Author

Mohammad K. Azarian, May 14 2004

Keywords

Examples

			229.651664083524132509929588
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(2E),10,120][[1]] (* Harvey P. Dale, Sep 28 2011 *)
  • PARI
    { default(realprecision, 20080); x=exp(1)^(2*exp(1))/100; for (n=3, 20000, d=floor(x); x=(x-d)*10; write("b093589.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009

A093592 Decimal expansion of e^(3*e).

Original entry on oeis.org

3, 4, 8, 0, 2, 0, 1, 5, 4, 1, 7, 1, 3, 8, 2, 9, 4, 5, 0, 2, 2, 1, 6, 3, 1, 2, 2, 4, 2, 2, 4, 8, 6, 0, 2, 5, 8, 3, 3, 9, 5, 2, 5, 0, 4, 0, 7, 7, 2, 3, 3, 7, 5, 3, 2, 7, 0, 4, 5, 0, 5, 7, 9, 0, 2, 7, 1, 4, 7, 2, 4, 7, 3, 9, 0, 2, 8, 0, 0, 4, 9, 0, 3, 9, 4, 0, 7, 1, 5, 6, 2, 1, 1, 5, 0, 9, 9, 2, 8, 2, 5, 0, 0, 9, 3
Offset: 4

Views

Author

Mohammad K. Azarian, May 14 2004

Keywords

Examples

			3480.20154171382945022163122422
		

Crossrefs

Programs

  • PARI
    { default(realprecision, 20080); x=exp(1)^(3*exp(1))/1000; for (n=4, 20000, d=floor(x); x=(x-d)*10; write("b093592.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009

A093606 Decimal expansion of e^(4*e).

Original entry on oeis.org

5, 2, 7, 3, 9, 8, 8, 6, 8, 1, 6, 3, 3, 1, 8, 0, 8, 0, 3, 7, 0, 9, 9, 9, 3, 3, 8, 9, 1, 4, 1, 4, 6, 7, 7, 3, 2, 5, 1, 4, 9, 3, 7, 0, 6, 8, 7, 3, 9, 4, 1, 8, 3, 4, 0, 7, 9, 0, 6, 4, 9, 5, 8, 8, 5, 6, 8, 7, 0, 4, 5, 6, 4, 8, 8, 0, 3, 5, 1, 0, 4, 4, 8, 6, 9, 7, 6, 4, 0, 7, 0, 8, 2, 4, 1, 1, 5, 2, 3, 6, 7, 7, 2, 5, 6
Offset: 5

Views

Author

Mohammad K. Azarian, May 14 2004

Keywords

Examples

			52739.88681633180803709993389141467732514937068739418340790649588568704...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(4E),10,120][[1]]  (* Harvey P. Dale, Apr 29 2011 *)
  • PARI
    { default(realprecision, 20080); x=exp(1)^(4*exp(1))/10000; for (n=5, 20000, d=floor(x); x=(x-d)*10; write("b093606.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009

Extensions

Offset corrected from 1 to 5 and example updated by Harry J. Smith, Jun 19 2009

A093619 Decimal expansion of e^(-2*e).

Original entry on oeis.org

0, 0, 4, 3, 5, 4, 4, 2, 0, 8, 7, 4, 7, 2, 2, 2, 5, 2, 2, 7, 9, 6, 7, 7, 3, 4, 2, 5, 1, 2, 7, 9, 4, 3, 2, 1, 1, 5, 1, 2, 3, 2, 4, 9, 2, 4, 6, 0, 1, 8, 0, 5, 7, 4, 3, 6, 2, 3, 4, 4, 1, 8, 7, 3, 5, 5, 2, 6, 8, 6, 3, 8, 4, 8, 3, 7, 8, 7, 8, 5, 9, 2, 4, 7, 3, 9, 8, 1, 2, 0, 5, 5, 0, 6, 1, 1, 7, 1, 7, 6, 6, 5, 8, 4, 8
Offset: 0

Views

Author

Mohammad K. Azarian, May 14 2004

Keywords

Examples

			0.004354420874722252279677
		

Crossrefs

Programs

  • Mathematica
    Join[{0,0},RealDigits[E^(-2E),10,120][[1]]] (* Harvey P. Dale, Jan 22 2016 *)
  • PARI
    { default(realprecision, 20080); x=10*exp(1)^(-2*exp(1)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b093619.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009

A093624 Decimal expansion of e^(-3*e).

Original entry on oeis.org

0, 0, 0, 2, 8, 7, 3, 3, 9, 6, 8, 0, 7, 6, 6, 7, 4, 9, 1, 5, 5, 8, 2, 1, 7, 8, 1, 3, 0, 7, 1, 7, 4, 8, 9, 3, 4, 1, 0, 2, 1, 0, 3, 7, 9, 7, 6, 6, 1, 5, 9, 6, 9, 7, 7, 3, 6, 3, 1, 3, 9, 0, 4, 4, 9, 7, 9, 7, 0, 6, 7, 3, 6, 7, 4, 5, 9, 3, 4, 5, 7, 8, 4, 7, 6, 4, 4, 2, 5, 4, 2, 4, 5, 5, 1, 3, 9, 2, 2, 2, 0, 6, 8, 1, 6
Offset: 0

Views

Author

Mohammad K. Azarian, May 14 2004

Keywords

Examples

			0.000287339680766749155
		

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0},RealDigits[E^(-3E),10,120][[1]]] (* Harvey P. Dale, Aug 02 2017 *)
  • PARI
    { default(realprecision, 20080); x=10*exp(1)^(-3*exp(1)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b093624.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009

A093626 Decimal expansion of e^(-4*e).

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 9, 6, 0, 9, 8, 1, 1, 5, 4, 2, 1, 6, 9, 0, 4, 6, 8, 2, 3, 6, 3, 8, 6, 0, 8, 0, 0, 6, 1, 7, 5, 2, 6, 3, 6, 7, 6, 9, 0, 3, 1, 5, 0, 9, 0, 4, 2, 5, 4, 8, 1, 4, 1, 4, 2, 8, 5, 0, 5, 3, 9, 2, 3, 4, 5, 6, 2, 0, 1, 3, 6, 4, 8, 0, 1, 6, 2, 7, 2, 7, 1, 9, 2, 4, 4, 4, 4, 3, 3, 8, 5, 4, 5, 1, 1, 9, 9, 7, 7
Offset: 0

Views

Author

Mohammad K. Azarian, May 14 2004

Keywords

Examples

			0.000018960981154216904682363860800
		

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0,0},RealDigits[1/(E^(4E)) ,10,120][[1]]] (* Harvey P. Dale, Jan 17 2023 *)
  • PARI
    { default(realprecision, 20080); x=10*exp(1)^(-4*exp(1)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b093626.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009

A187079 Decimal expansion of (sqrt(2 + e^e)/e)^e.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 9, 0, 0, 9, 4, 5, 1, 7, 6, 4, 7, 3, 8, 1, 2, 5, 3, 9, 7, 1, 5, 5, 2, 4, 1, 2, 8, 4, 9, 5, 7, 3, 3, 4, 2, 4, 5, 5, 1, 0, 4, 0, 7, 8, 2, 7, 0, 7, 2, 1, 9, 7, 5, 5, 5, 2, 0, 8, 6, 7, 7, 1, 1, 7, 2, 8, 5, 5, 0, 1, 3, 3, 2, 0, 9, 8, 7, 8, 2, 2, 1, 2, 6, 1, 1, 8, 6, 2, 2, 7, 3, 2, 7, 0, 8, 4, 5, 2, 2
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 08 2011

Keywords

Comments

(sqrt(2 + e^e)/e)^e is an approximation to Pi that's correct to five decimal digits.

Examples

			(sqrt(2+e^e)/e)^e = 3.141599009451764738125397155...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (Sqrt(2+Exp(Exp(1)))/Exp(1))^Exp(1); // G. C. Greubel, Sep 29 2018
  • Maple
    evalf((sqrt(2+exp(1)^exp(1))/exp(1))^exp(1),120); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    RealDigits[N[(Sqrt[2 + E^E]/E)^E, 200]][[1]] (* Arkadiusz Wesolowski, Mar 08 2011 *)
  • PARI
    default(realprecision, 200); e=exp(1); x=(sqrt(2+e^e)/e)^e; for(n=1, 200, d=floor(x); x=(x-d)*10; print1(d, ", ")); \\ Arkadiusz Wesolowski, Mar 08 2011
    

A202949 Decimal expansion of (e^e)^(e^e), where e=exp(1).

Original entry on oeis.org

7, 7, 6, 4, 8, 6, 5, 1, 7, 9, 1, 5, 8, 0, 8, 4, 5, 7, 3, 8, 2, 6, 2, 7, 0, 7, 2, 1, 4, 4, 8, 0, 1, 1, 1, 2, 6, 9, 8, 1, 3, 7, 3, 8, 7, 4, 0, 8, 9, 3, 7, 3, 3, 3, 6, 1, 0, 9, 8, 0, 2, 3, 7, 7, 6, 5, 6, 2, 9, 9, 8, 3, 3, 8, 8, 7, 4, 6, 9, 6, 4, 8, 1, 7, 9, 2, 5, 8, 5, 4, 7, 2, 2, 8, 9
Offset: 18

Views

Author

M. F. Hasler, Dec 26 2011

Keywords

Examples

			776486517915808457.38262707214480111269813738740893733361098023776562998338874696481792585472289...
		

Crossrefs

Cf. A073226, A073227, A073228, A085667, A181180, A073232. - M. F. Hasler, Dec 26 2011

Programs

  • Mathematica
    RealDigits[#^#&/@(E^E),10,120][[1]] (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    default(realprecision,99); t=exp(1); t=t^t; t=t^t

Formula

A226776 Decimal expansion of the maximum value of f(x) = x - log(x)^log(x).

Original entry on oeis.org

3, 4, 1, 7, 2, 1, 9, 2, 5, 1, 7, 3, 3, 1, 9, 0, 3, 7, 8, 2, 9, 4, 1, 4, 3, 0, 6, 2, 6, 5, 1, 1, 9, 9, 1, 1, 4, 1, 6, 6, 5, 1, 6, 9, 7, 2, 8, 8, 6, 9, 6, 2, 1, 0, 3, 4, 5, 8, 3, 7, 8, 4, 2, 0, 6, 0, 6, 2, 6, 2, 8, 3, 7, 2, 6, 3, 8, 2, 4, 1, 5, 0, 3, 2, 9, 2, 8, 3, 4, 7, 8, 0
Offset: 1

Views

Author

Richard R. Forberg, Jun 17 2013

Keywords

Comments

The value of x where f(x) is maximum is 8.06157... Note that greater precision in this value is made difficult due to a broad "flat" maximum.
In the recursive formula: b(n+1) = log(b(n))^log(b(n)) + c, where c is a constant, the maximum value of c, without the recursion diverging to infinity, is maximum value of the function above (3.4172192....), with b(1) set anywhere in the range 1 < b(1) <= 8.06157.
At values of c between 3.4172192 +/- 0.0000005 demonstrable convergence or divergence of the recursion above takes tens of thousands of iterations, increasing with further closeness to 3.4172192517331..., if b(1) is within the range above.
At x = e^e = 15.1542... (see A073226), the function f(x) = 0. This is the only value for b(1) where the recursion above is stable when c = 0.

Examples

			3.4172192517331903782941430626511991141665169728869621034583784206062...
		

Programs

  • Mathematica
    digits = 92; FindMaximum[x-Log[x]^Log[x], {x, 3}, WorkingPrecision -> digits] // First // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 20 2014 *)
  • PARI
    (x->x-log(x)^log(x))(solve(x=8,9,my(L=log(x));1-L^L*(1+log(L))/x)) \\ Charles R Greathouse IV, Jun 18 2013

A235214 Decimal expansion of exp(exp(1) + 1).

Original entry on oeis.org

4, 1, 1, 9, 3, 5, 5, 5, 6, 7, 4, 7, 1, 6, 1, 2, 3, 5, 6, 3, 1, 8, 8, 2, 8, 7, 6, 8, 4, 3, 6, 4, 3, 3, 1, 9, 7, 7, 8, 5, 7, 6, 8, 3, 0, 4, 2, 8, 6, 3, 1, 5, 7, 7, 8, 3, 0, 8, 8, 0, 4, 4, 2, 2, 3, 2, 3, 9, 1, 4, 7, 7, 4, 7, 1, 7, 9, 8, 9, 6, 3, 0, 7, 0, 4, 5, 4, 7, 2, 2, 3, 4, 8, 6, 6, 9, 6, 2, 9, 4, 2, 7, 2, 3, 4
Offset: 2

Views

Author

Richard R. Forberg, Jan 04 2014

Keywords

Comments

May also be written as e*(e^e).

Examples

			41.19355567471612356318828...
		

Crossrefs

Cf. A005493, A234473 (e^e/e), A073226 (e^e), A001113 (e).

Programs

Formula

Equals Sum_{n>=0} A005493(n)/n!.
Equals 2*lim_{n->oo} n*(exp(Sum_{k=0..n} 1/k!) - ((1+1/n)^n)^e). See the Mathematical Gazette link. - Michel Marcus, Oct 24 2017
Equals Sum_{k>=1} e^k/(k-1)!. - Amiram Eldar, Jul 28 2020

Extensions

More terms from Rick L. Shepherd, Jan 25 2014
Previous Showing 21-30 of 42 results. Next