cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A152885 Number of descents beginning and ending with an odd number in all permutations of {1,2,...,n}.

Original entry on oeis.org

0, 0, 2, 6, 72, 360, 4320, 30240, 403200, 3628800, 54432000, 598752000, 10059033600, 130767436800, 2440992153600, 36614882304000, 753220435968000, 12804747411456000, 288106816757760000, 5474029518397440000, 133809610449715200000, 2810001819444019200000
Offset: 1

Views

Author

Emeric Deutsch, Jan 19 2009

Keywords

Comments

a(n) is also number of descents beginning with an odd number and ending with an even number in all permutations of {1,2,...,n}. Example: a(4)=6; indeed for n=4 the only descent to be counted is 32, occurring only in 1324, 1432, 4132, 3214, 3241 and 4321.

Examples

			a(6) = 360 because (i) the descent pairs can be chosen in binomial(3,2) = 3 ways, namely (3,1), (5,1), (5,3); (ii) they can be placed in 5 positions, namely (1,2),(2,3),(3,4),(4,5),(5,6); (iii) the remaining 4 entries can be permuted in 4!=24 ways; 3*5*24 = 360.
		

Crossrefs

Programs

  • Maple
    a := proc (n) if `mod`(n, 2) = 0 then (1/4)*factorial(n)*((1/2)*n-1) else (1/8)*(n-1)*(n+1)*factorial(n-1) end if end proc: seq(a(n), n = 1 .. 20);
  • Mathematica
    a[n_] := (n - 1)! * Binomial[If[OddQ[n], (n + 1)/2, n/2], 2]; Array[a, 25] (* Amiram Eldar, Jan 22 2023 *)

Formula

a(2n) = (2n-1)!*binomial(n,2); a(2n+1) = (2n)!*binomial(n+1,2).
D-finite with recurrence (-n+3)*a(n) +(n-1)*a(n-1) +n*(n-1)*(n-2)*a(n-2)=0. - R. J. Mathar, Jul 26 2022
Sum_{n>=3} 1/a(n) = 8*(CoshIntegral(1) - gamma - sinh(1) + 1) = 8*(A099284 - A001620 - A073742 + 1). - Amiram Eldar, Jan 22 2023

A334378 Decimal expansion of Sum_{k>=0} 1/((2*k+1)!)^2.

Original entry on oeis.org

1, 0, 2, 7, 8, 4, 7, 2, 6, 1, 5, 9, 7, 4, 1, 5, 7, 9, 9, 6, 9, 2, 6, 8, 8, 4, 9, 3, 0, 8, 0, 7, 9, 2, 3, 6, 3, 7, 3, 0, 3, 4, 3, 3, 1, 0, 2, 8, 3, 4, 2, 5, 7, 2, 5, 4, 7, 1, 2, 4, 5, 0, 2, 2, 8, 2, 6, 7, 2, 5, 6, 9, 2, 7, 3, 2, 3, 3, 2, 8, 1, 8, 8, 5, 7, 3, 5, 2, 7, 8, 8, 3, 5, 1, 5, 2, 8, 2, 6, 6, 4, 6, 7, 6, 7, 9, 2, 3, 7, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/1!^2 + 1/3!^2 + 1/5!^2 + 1/7!^2 + ... = 1.027847261597415799692...
Continued fraction: 1 + 1/(36 - 36/(401 - 400/(1765 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (2*n*(2*n + 1))^2 for n >= 1. - _Peter Bala_, Feb 22 2024
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 2] - BesselJ[0, 2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/((2*k+1)!)^2) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    (besseli(0,2) - besselj(0,2))/2 \\ Michel Marcus, Apr 26 2020

Formula

Equals (BesselI(0,2) - BesselJ(0,2))/2.

A334399 Decimal expansion of sinh(e).

Original entry on oeis.org

7, 5, 4, 4, 1, 3, 7, 1, 0, 2, 8, 1, 6, 9, 7, 5, 8, 2, 6, 3, 4, 1, 8, 2, 0, 0, 4, 2, 5, 1, 6, 5, 3, 2, 7, 4, 0, 2, 9, 4, 9, 8, 5, 7, 4, 4, 3, 0, 1, 6, 7, 1, 6, 6, 6, 3, 6, 9, 1, 3, 6, 4, 3, 2, 1, 7, 4, 0, 4, 7, 3, 2, 1, 8, 5, 0, 0, 8, 9, 0, 6, 2, 2, 5, 2, 1, 8, 4, 3, 6, 2, 9, 5, 2, 2, 5, 0, 9, 9, 6, 3, 8, 2, 9, 5, 6, 0, 0, 1, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Examples

			(e^e - e^(-e))/2 = 7.54413710281697582634182004251653274...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[E], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} e^(2*k+1)/(2*k+1)!.

A344418 a(n) = n*a(n-1) + n^(1+n mod 2), a(0) = 0.

Original entry on oeis.org

0, 1, 4, 13, 56, 281, 1692, 11845, 94768, 852913, 8529140, 93820541, 1125846504, 14636004553, 204904063756, 3073560956341, 49176975301472, 836008580125025, 15048154442250468, 285914934402758893, 5718298688055177880, 120084272449158735481, 2641853993881492180604
Offset: 0

Views

Author

Alois P. Heinz, May 17 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(1+n mod 2) end: a(0):= 0:
    seq(a(n), n=0..23);

Formula

E.g.f.: (x+1)*sinh(x)/(1-x).
a(n) = A344317(n) - n! = A344317(n) - A000142(n).
a(n) = A155521(n-1) + A344419(n) for n > 0.
Lim_{n-> infinity} a(n)/n! = 2*sinh(1) = 2*A073742 = e-1/e = A174548. - Amrit Awasthi, May 20 2021

A366599 Decimal expansion of arcsinh(e).

Original entry on oeis.org

1, 7, 2, 5, 3, 8, 2, 5, 5, 8, 8, 5, 2, 3, 1, 5, 0, 9, 3, 9, 4, 5, 0, 9, 7, 9, 7, 0, 4, 0, 4, 8, 8, 8, 7, 5, 6, 2, 7, 4, 5, 5, 7, 2, 7, 4, 6, 7, 2, 9, 3, 8, 6, 6, 8, 8, 1, 4, 2, 1, 1, 5, 5, 6, 7, 0, 8, 6, 8, 6, 2, 6, 8, 4, 7, 5, 8, 1, 7, 8, 3, 1, 8, 4, 0, 3, 8
Offset: 1

Views

Author

Kritsada Moomuang, Oct 14 2023

Keywords

Examples

			1.7253825588523150939450...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcSinh[E], 10, 100] [[1]]
  • PARI
    asinh(exp(1)) \\ Amiram Eldar, Oct 18 2023

Formula

Equals log(A188640). - Amiram Eldar, Oct 18 2023

A052657 Expansion of e.g.f. x^2/((1-x)^2*(1+x)).

Original entry on oeis.org

0, 0, 2, 6, 48, 240, 2160, 15120, 161280, 1451520, 18144000, 199584000, 2874009600, 37362124800, 610248038400, 9153720576000, 167382319104000, 2845499424768000, 57621363351552000, 1094805903679488000, 24329020081766400000, 510909421717094400000, 12364008005553684480000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Stirling transform of -(-1)^n*a(n-1) = [0, 0, 2, -6, 48, -240, ...] is A052841(n-1) = [0, 0, 2, 6, 38, 270, ...]. - Michael Somos, Mar 04 2004

Crossrefs

Programs

  • Maple
    spec := [S,{S=Prod(Z,Z,Sequence(Z),Sequence(Prod(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    a[n_] := Floor[n/2] * n!; Array[a, 25, 0] (* Amiram Eldar, Jan 22 2023 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(x^2/(1-x)/(1-x^2)+x*O(x^n),n))
    
  • PARI
    a(n)=n!*(n\2); \\ Joerg Arndt, Jan 22 2023

Formula

a(0)=0, a(1)=0, a(2)=2, n*a(n+2) = (n+2)*a(n+1) + (n^3 + 4*n^2 + 5*n + 2)*a(n).
a(n) = (2*n-1+(-1)^n)*n!/4 = n!*floor(n/2) = n!*A004526(n).
E.g.f.: x^2/((1-x)*(1-x^2)).
Sum_{n>=2} 1/a(n) = 4*CoshIntegral(1) - 4*gamma - 2*sinh(1) + 2 = 4*A099284 - 4*A001620 - 2*A073742 + 2. - Amiram Eldar, Jan 22 2023

A196932 Decimal expansion of sinh(1)*cosh(1).

Original entry on oeis.org

1, 8, 1, 3, 4, 3, 0, 2, 0, 3, 9, 2, 3, 5, 0, 9, 3, 8, 3, 8, 3, 4, 1, 0, 6, 9, 9, 1, 4, 0, 0, 6, 3, 0, 8, 5, 2, 4, 4, 3, 1, 7, 1, 0, 0, 6, 1, 6, 0, 5, 6, 7, 8, 6, 0, 6, 5, 4, 7, 4, 2, 2, 3, 7, 4, 6, 7, 1, 2, 5, 1, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 23 2011

Keywords

Comments

Also decimal expansion of sinh(2)/2.
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			sinh(1)*cosh(1) = sinh(2)/2 = 1.8134302039235093838341...
		

Crossrefs

Programs

Formula

Equals Product_{k>=1} 1 + 4/(k * Pi)^2. - Amiram Eldar, Jul 16 2020

Extensions

a(25)-a(72) from John W. Layman, Oct 24 2011

A346205 Decimal expansion of solution to LambertW(-x) - LambertW(-1,-x) = 2.

Original entry on oeis.org

2, 2, 8, 8, 9, 8, 9, 4, 8, 1, 9, 6, 1, 7, 8, 6, 4, 1, 2, 3, 6, 6, 3, 6, 1, 2, 5, 3, 7, 2, 2, 0, 5, 5, 3, 5, 6, 3, 4, 2, 6, 2, 8, 2, 7, 1, 8, 1, 4, 6, 2, 6, 2, 3, 6, 6, 7, 6, 7, 7, 7, 6, 6, 1, 4, 4, 4, 1, 3, 2, 0, 3, 0, 2, 2, 3, 1, 9, 6, 9, 7, 1, 3, 6, 7, 8, 3, 1, 5, 3, 2, 3, 7, 3, 9, 7, 7, 1, 5, 7, 3, 3, 6, 3, 1, 3, 4, 6, 6, 6
Offset: 0

Views

Author

Gleb Koloskov, Jul 10 2021

Keywords

Examples

			0.2288989481961786412366361253722...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(135)); 2/(Exp(2)-1)*Exp(2/(1-Exp(2))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    x/.FindRoot[LambertW[-x]-LambertW[-1,-x]==2, {x, 0.1, 0.3}, WorkingPrecision -> 110]
    RealDigits[2/(E^2-1)*Exp[2/(1-E^2)], 10, 135][[1]] (* G. C. Greubel, Jun 11 2024 *)
  • PARI
    exp(-cotanh(1))/sinh(1)
    
  • SageMath
    numerical_approx(2/(e^2-1)*exp(2/(1-e^2)), digits=135) # G. C. Greubel, Jun 11 2024

Formula

Equals exp(-coth(1))/sinh(1) = exp(-A073747)/A073742.
Equals (coth(1)-1)*exp(1-coth(1)) = (A073747-1)*exp(1-A073747).
Equals (coth(1)+1)/exp(1+coth(1)) = (A073747+1)/exp(1+A073747).
Equals 2/(e^2-1)*exp(2/(1-e^2)) = 2/(A072334^2-1)*exp(2/(1-A072334^2)).

A372338 Decimal expansion of Sum_{k>=0} (k+2) / ((k+1)*(2k)!).

Original entry on oeis.org

2, 8, 0, 7, 3, 2, 1, 7, 5, 2, 4, 7, 2, 3, 5, 9, 1, 3, 5, 2, 8, 6, 8, 5, 8, 0, 8, 0, 4, 3, 4, 1, 3, 9, 9, 4, 7, 7, 0, 9, 9, 0, 6, 8, 5, 0, 3, 0, 2, 3, 2, 8, 0, 3, 5, 7, 2, 1, 7, 2, 8, 6, 1, 1, 3, 1, 5, 8, 4, 6, 0, 7, 1, 5, 5, 9, 4, 2, 4, 0, 9, 2, 2, 4, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Apr 28 2024

Keywords

Examples

			2.8073217524723591352868580804341...
		

Crossrefs

Programs

  • Mathematica
    s = Sum[(k + 2)/((k + 1) (2 k)!), {k, 0, Infinity}]
    d = N[s, 100]
    First[RealDigits[d]]

Formula

Equals -4/e + 2 + 3*cosh(1) - 2*sinh(1).
Equals 2*2F3(1,3; 1/2,2,2; 1/4). - R. J. Mathar, Aug 02 2024

A347199 Decimal expansion of sin(1) * sinh(1).

Original entry on oeis.org

9, 8, 8, 8, 9, 7, 7, 0, 5, 7, 6, 2, 8, 6, 5, 0, 9, 6, 3, 8, 2, 1, 2, 9, 5, 4, 0, 8, 9, 2, 6, 8, 6, 1, 8, 8, 6, 4, 2, 1, 4, 9, 6, 9, 5, 0, 3, 3, 1, 4, 7, 6, 0, 7, 5, 3, 6, 8, 1, 6, 0, 1, 0, 4, 2, 9, 7, 3, 5, 4, 4, 5, 7, 6, 9, 7, 2, 3, 0, 5, 0, 5, 9, 5, 1, 2, 1
Offset: 0

Views

Author

Sean A. Irvine, Aug 22 2021

Keywords

Examples

			0.9888977057628650963821295408926861886421496950...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press (1979), Eq. (1.413.1).

Crossrefs

Programs

  • Mathematica
    RealDigits[Sin[1] * Sinh[1], 10, 120][[1]] (* Amiram Eldar, Jun 15 2023 *)
  • PARI
    sin(1) * sinh(1) \\ Amiram Eldar, Jun 15 2023

Formula

Equals Sum_{k>=0} (-1)^k * 2^(2*k+1) / (4*k+2)!.
Equals Product_{k>=1} (1 - 1/(Pi^4*k^4)).
Equals 0F3(;3/4,5/4,3/2; -1/64). - R. J. Mathar, Aug 03 2024
Previous Showing 31-40 of 41 results. Next