1, 9, 99, 990, 9999, 99891, 999999, 9999000, 99999900, 999989991, 9999999999, 99999899010, 999999999999, 9999998999991, 99999999989901, 999999990000000, 9999999999999999, 99999999899900100, 999999999999999999, 9999999998999999010, 99999999999998999901
Offset: 1
A383011
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} mu(n/d) * (-k)^d.
Original entry on oeis.org
1, 2, -1, 3, -3, 0, 4, -6, 2, 0, 5, -10, 8, -3, 0, 6, -15, 20, -18, 6, 0, 7, -21, 40, -60, 48, -11, 0, 8, -28, 70, -150, 204, -124, 18, 0, 9, -36, 112, -315, 624, -690, 312, -30, 0, 10, -45, 168, -588, 1554, -2620, 2340, -810, 56, 0, 11, -55, 240, -1008, 3360, -7805, 11160, -8160, 2184, -105, 0
Offset: 1
Square array begins:
1, 2, 3, 4, 5, 6, 7, ...
-1, -3, -6, -10, -15, -21, -28, ...
0, 2, 8, 20, 40, 70, 112, ...
0, -3, -18, -60, -150, -315, -588, ...
0, 6, 48, 204, 624, 1554, 3360, ...
0, -11, -124, -690, -2620, -7805, -19656, ...
0, 18, 312, 2340, 11160, 39990, 117648, ...
A060216
Number of orbits of length n under the full 13-shift (whose periodic points are counted by A001022).
Original entry on oeis.org
13, 78, 728, 7098, 74256, 804076, 8964072, 101962770, 1178277464, 13785812040, 162923672184, 1941506688940, 23298085122480, 281241165925044, 3412392867581152, 41588538022965570
Offset: 1
a(2)=78 since there are 169 points of period 2 in the full 13-shift and 13 fixed points, so there must be (169-13)/2 = 78 orbits of length 2.
- Indranil Ghosh, Table of n, a(n) for n = 1..100
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- T. Ward, Exactly realizable sequences
-
f:= n -> add(numtheory:-mobius(d)*13^(n/d),d=numtheory:-divisors(n))/n;
seq(f(n), n=1..100); # Robert Israel, Jan 07 2015
-
a[n_]:=(1/n) * Sum[MoebiusMu[d] *13^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 20}] (* Indranil Ghosh, Mar 26 2017 *)
-
a(n) = sumdiv(n, d, moebius(d)*13^(n/d))/n; \\ Michel Marcus, Jan 07 2015
-
from sympy import divisors, mobius
print([sum(mobius(d) * 13**(n//d) for d in divisors(n))//n for n in range(1, 21)]) # Indranil Ghosh, Mar 26 2017
A060217
Number of orbits of length n under the full 14-shift (whose periodic points are counted by A001023).
Original entry on oeis.org
14, 91, 910, 9555, 107562, 1254435, 15059070, 184468830, 2295671560, 28925411697, 368142288150, 4724492067295, 61054982558010, 793714765724595, 10371206370484778, 136122083520848880, 1793608631137129170, 23715491899442676060, 314542313628890231430, 4183412771249777343369
Offset: 1
a(2)=91 since there are 196 points of period 2 in the full 14-shift and 14 fixed points, so there must be (196-14)/2 = 91 orbits of length 2.
- G. C. Greubel, Table of n, a(n) for n = 1..870
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
- T. Ward, Exactly realizable sequences
-
A060217:= func< n | (&+[MoebiusMu(d)*14^Floor(n/d): d in Divisors(n)])/n >;
[A060217(n): n in [1..40]]; // G. C. Greubel, Aug 01 2024
-
A060217[n_]:= DivisorSum[n, MoebiusMu[#]*14^(n/#) &]/n;
Table[A060217[n], {n,40}] (* G. C. Greubel, Aug 01 2024 *)
-
a001023(n) = 14^n;
a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001023(n/d)); \\ Michel Marcus, Sep 11 2017
-
def A060217(n): return sum(moebius(k)*14^(n//k) for k in (1..n) if (k).divides(n))/n
[A060217(n) for n in range(1,41)] # G. C. Greubel, Aug 01 2024
A060218
Number of orbits of length n under the full 15-shift (whose periodic points are counted by A001024).
Original entry on oeis.org
15, 105, 1120, 12600, 151872, 1897840, 24408480, 320355000, 4271484000, 57664963104, 786341441760, 10812193870800, 149707312950720, 2085208989609360, 29192926025339776, 410525522071875000, 5795654431511374080, 82105104444274758000, 1166756747396368729440, 16626283650369421872480
Offset: 1
a(2)=105 since there are 225 points of period 2 in the full 15-shift and 15 fixed points, so there must be (225-15)/2 = 105 orbits of length 2.
- Robert Israel, Table of n, a(n) for n = 1..851
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
- T. Ward, Exactly realizable sequences
-
A060218:= func< n | (&+[MoebiusMu(d)*15^Floor(n/d): d in Divisors(n)])/n >;
[A060218(n): n in [1..40]]; // G. C. Greubel, Aug 01 2024
-
f:= n -> 1/n*add(numtheory:-mobius(d)*15^(n/d), d = numtheory:-divisors(n)):
map(f, [$1..30]); # Robert Israel, Oct 28 2018
-
A060218[n_]:= DivisorSum[n, MoebiusMu[#]*15^(n/#) &]/n;
Table[A060218[n], {n, 40}] (* G. C. Greubel, Aug 01 2024 *)
-
a001024(n) = 15^n;
a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001024(n/d)); \\ Michel Marcus, Sep 11 2017
-
def A060218(n): return sum(moebius(k)*15^(n//k) for k in (1..n) if (k).divides(n))/n
[A060218(n) for n in range(1,41)] # G. C. Greubel, Aug 01 2024
A060219
Number of orbits of length n under the full 16-shift (whose periodic points are counted by A001025).
Original entry on oeis.org
16, 120, 1360, 16320, 209712, 2795480, 38347920, 536862720, 7635496960, 109951057896, 1599289640400, 23456246655680, 346430740566960, 5146970983535160, 76861433640386288, 1152921504338411520, 17361641481138401520, 262353693488939386880, 3976729669784964390480
Offset: 1
a(2)=120 since there are 256 points of period 2 in the full 16-shift and 16 fixed points, so there must be (256-16)/2 = 120 orbits of length 2.
- G. C. Greubel, Table of n, a(n) for n = 1..825
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- T. Ward, Exactly realizable sequences
-
A060219:= func< n | (&+[MoebiusMu(d)*16^Floor(n/d): d in Divisors(n)])/n >;
[A060219(n): n in [1..40]]; // G. C. Greubel, Aug 01 2024
-
f:= (n,p) -> add(numtheory:-mobius(d)*p^(n/d),d=numtheory:-divisors(n))/n:
seq(f(n,16),n=1..30); # Robert Israel, Jan 07 2015
-
A060219[n_]:= DivisorSum[n, MoebiusMu[#]*16^(n/#) &]/n;Table[A060219[n], {n, 40}] (* G. C. Greubel, Aug 01 2024 *)
-
a(n) = sumdiv(n, d, moebius(d)*16^(n/d))/n; \\ Michel Marcus, Jan 07 2015
-
def A060219(n): return sum(moebius(k)*16^(n//k) for k in (1..n) if (k).divides(n))/n
[A060219(n) for n in range(1, 41)] # G. C. Greubel, Aug 01 2024
A060220
Number of orbits of length n under the full 17-shift (whose periodic points are counted by A001026).
Original entry on oeis.org
17, 136, 1632, 20808, 283968, 4022064, 58619808, 871959240, 13176430176, 201599248032, 3115626937056, 48551851084080, 761890617915840, 12026987582075856, 190828203433892736, 3041324491793194440, 48661191875666868480, 781282469552728498992, 12582759772902701307744
Offset: 1
a(2)=136 since there are 289 points of period 2 in the full 17-shift and 17 fixed points, so there must be (289-17)/2 = 136 orbits of length 2.
- G. C. Greubel, Table of n, a(n) for n = 1..810
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
- T. Ward, Exactly realizable sequences
-
A060220:= func< n | (1/n)*(&+[MoebiusMu(d)*(17)^Floor(n/d): d in Divisors(n)]) >;
[A060220(n): n in [1..40]]; // G. C. Greubel, Sep 13 2024
-
A060220[n_]:= DivisorSum[n, (17)^(n/#)*MoebiusMu[#] &]/n;
Table[A060220[n], {n,40}] (* G. C. Greubel, Sep 13 2024 *)
-
a001024(n) = 17^n;
a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001024(n/d)); \\ Michel Marcus, Sep 11 2017
-
def A060220(n): return (1/n)*sum(moebius(k)*(17)^(n/k) for k in (1..n) if (k).divides(n))
[A060220(n) for n in range(1,41)] # G. C. Greubel, Sep 13 2024
Comments