cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A332645 Decimal expansion of Sum_{n>=1} 1/z(n)^2 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 2, 3, 1, 0, 4, 9, 9, 3, 1, 1, 5, 4, 1, 8, 9, 7, 0, 7, 8, 8, 9, 3, 3, 8, 1, 0, 4, 3, 0, 3, 3, 9, 0, 1, 4, 0, 0, 3, 3, 8, 1, 7, 6, 0, 3, 9, 7, 4, 2, 2, 0, 9, 0, 1, 2, 3, 1, 8, 2, 5, 0, 0, 5, 6, 0, 7, 6, 3, 7, 4, 7, 9, 5, 4, 0, 0, 6, 1, 6, 3, 1, 3, 9, 8, 4, 4, 4, 8, 6, 7, 8, 3, 1, 5, 8, 9, 8, 0, 0, 6, 9, 7, 6, 7, 7
Offset: 0

Views

Author

Artur Jasinski, Feb 18 2020

Keywords

Examples

			0.0231049931154189707889338104303390140033817603974220901231825...
		

References

  • J. P. Gram, "Note sur le calcul de la fonction zeta(s) de Riemann", Det Kgl. Danske Vid. Selsk. Overs., 1895, pp. 303-308. p.307 (16 decimal digits).
  • Charles Jean De La Vallée Poussin, Sur La Fonction de Riemann Et Le Nombre Des Nombres Premiers Inférieurs à Une Limite Donnee, 1899.

Crossrefs

Programs

  • Maple
    evalf((-32 - log(Pi)^2 + Psi(0, 1/4)^2 + Psi(1, 1/4) + 4*(Psi(0, 1/4) * Zeta(1, 1/2) + Zeta(2, 1/2)) / Zeta(1/2)) / 8, 120); # Vaclav Kotesovec, Feb 19 2020
  • Mathematica
    Join[{0}, RealDigits[N[-4 + Catalan + Pi^2/8 + (Zeta''[1/2]/Zeta[1/2] - (Zeta'[1/2] / Zeta[1/2])^2)/2, 105]][[1]]]
    N[SeriesCoefficient[Log[s*(s-1)*Pi^(-s/2)*Gamma[s/2]*Zeta[s]/2], {s, 1/2, 2}], 105] (* Vaclav Kotesovec, Feb 19 2020 *)

Formula

Equals -4 + G + Pi^2/8 + (1/2)(zeta''(1/2)/zeta(1/2) - (zeta'(1/2)/zeta(1/2))^2) where G is the Catalan constant A006752.
Equals G - 4 + (Pi^2 - (gamma + Pi/2 + log(8*Pi))^2) / 8 + zeta''(1/2) / (2*zeta(1/2)), where gamma is the Euler-Mascheroni constant A001620 and G is the Catalan constant A006752. - Vaclav Kotesovec, Feb 19 2020
Also equals (-32 - log(Pi)^2 + psi(0, 1/4)^2 + psi(1, 1/4) + 4*(psi(0, 1/4) * zeta'(1/2) + zeta''(1/2)) / zeta(1/2)) / 8, where psi(0, 1/4) = -A020777 and psi(1, 1/4) = A282823. - Vaclav Kotesovec, Feb 19 2020

A333360 Decimal expansion of Sum_{n>=1} 1/z(n)^3 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 7, 2, 9, 5, 4, 8, 2, 7, 2, 7, 0, 9, 7, 0, 4, 2, 1, 5, 8, 7, 5, 5, 1, 8, 5, 6, 9, 0, 9, 3, 9, 7, 0, 5, 0, 3, 3, 5, 1, 5, 0, 5, 7, 0, 3, 5, 5, 4, 2, 3, 7, 3, 5, 8, 9, 6, 5, 2, 7, 4, 4, 6, 6, 6, 1, 2, 3, 0, 2, 4, 4, 7, 1, 3, 2, 9, 1, 2, 8, 7, 8, 3, 2, 5, 6, 3, 9, 6, 7, 1, 7, 6, 2, 8, 3, 8, 4, 6, 5, 6, 7, 0, 2, 4, 1, 4, 3, 5, 8, 5, 2, 4
Offset: 0

Views

Author

Artur Jasinski, Mar 16 2020

Keywords

Comments

a(1)-a(7) published by André Voros in 2001.
a(8)-a(20) computed by David Platt, Mar 15 2020.
a(21)-a(78) computed by Fredrik Johansson, Aug 04 2022 by mpmath procedure.
a(79)-a(350) computed by Artur Kawalec, Aug 15 2022 up to 350 decimal digits on basis algorithm of Juan Arias de Reyna.
a(351)-a(495) computed by Juan Arias de Reyna, using his implementation in mpmath from 2010, documented in his paper from 2020 (see link).
b-file on basis data from email Aug 16 2022 of Juan Arias de Reyna to Artur Jasinski.
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727...; this sequence.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886...; see A335814.
Sum_{m>=1} 1/z(m)^6 = 0.0000001441739...; see A335826.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.
Sum_{r>=1} Sum_{m>=n+1} 1/(z(r)*z(m))^3 = 0.00000619403... see A355283.

Examples

			0.00072954827270970421...
		

Crossrefs

Programs

  • Python
    from mpmath import *
    mp.dps = 90
    nprint(secondzeta(3), 78)

Formula

No explicit formula is known (André Voros, personal communication to Artur Jasinski, Mar 09 2020).

A335814 Decimal expansion of Sum_{n>=1} 1/z(n)^5 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 2, 3, 1, 1, 8, 8, 6, 9, 9, 5, 0, 2, 1, 0, 3, 3, 2, 8, 6, 4, 0, 6, 2, 8, 6, 9, 1, 8, 3, 7, 1, 9, 3, 3, 7, 6, 0, 7, 6, 4, 3, 1, 0, 8, 7, 9, 3, 4, 4, 8, 9, 7, 7, 8, 2, 2, 6, 1, 7, 9, 8, 5, 9, 7, 8, 1, 2, 2, 2, 1, 5, 2, 4, 2, 3, 6, 5, 8, 2, 4, 7, 0, 9, 5, 4, 4, 6, 6, 1, 3, 6, 8, 3, 3, 9, 6, 6, 4, 4, 0, 2, 4, 7, 2, 9, 7, 2, 8, 6
Offset: 0

Views

Author

Artur Jasinski, Jun 25 2020

Keywords

Comments

a(1)-a(34) computed by David Platt, Mar 15 2020.
a(35)-a(78) computed by Fredrik Johansson, Aug 04 2022 by mpmath procedure.
a(79)-a(115) computed by Artur Kawalec, Aug 15 2022 up to 350 decimal digits on basis Juan Arias de Reyna algorithm.
b-file on basis data from email Aug 15 2022 from Artur Kawalec to Artur Jasinski.
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931154...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886...; see A335814.
Sum_{m>=1} 1/z(m)^6 = 0.0000001441739...; see A335826.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.
Sum_{r>=1} Sum_{m>=n+1} 1/(z(r)*z(m))^3 = 0.00000619403... see A355283.

Examples

			0.0000022311886995021033286406286918...
		

Crossrefs

Programs

  • Python
    from mpmath import *
    mp.dps = 90
    nprint(secondzeta(5), 78)

Formula

No explicit formula for Sum_{n>=1} 1/z(n)^k is known for odd exponents k (André Voros, personal communication to Artur Jasinski, Mar 09 2020).

A332614 a(n) is the smallest index k such that Sum_{m=1..k} 1/z(m) > n where z(m) is the imaginary part of the m-th nontrivial zero of the Riemann zeta function, n=0,1,2,...

Original entry on oeis.org

1, 93, 621, 2437, 7438, 19490, 45996, 100462, 206617, 404855, 762155, 1387088, 2452209, 4227039, 7126088, 11778044, 19124514, 30559702, 48126380, 74788784, 114809974, 174270215, 261774713, 389414312, 574062463, 839117171, 1216829213, 1751399577, 2503082172, 3553595368
Offset: 0

Views

Author

Artur Jasinski, Feb 17 2020

Keywords

Comments

Because series Sum_{m>=1} 1/z(m) is divergent this sequence is infinite.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966... see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317... see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823... see A245276.
a(11)-a(39) computed by David Platt, Mar 20 2020.

Examples

			a(0)=1 because 1/z(1) = 0.070747749954285585596 > 0
a(1)=93 because Sum_{m=1..93} 1/z(m) = 1.00082895080028509266 > 1
a(2)=621 because Sum_{m=1..621} 1/z(m) = 2.00017203211984838994 > 2.
		

Crossrefs

Programs

  • Mathematica
    aa = {}; kk = 0; b = 0; Do[b = b + N[1/Im[ZetaZero[n]], 30];
    If[b > kk, AppendTo[aa, n]; kk = kk + 1];, {n, 1, 1000000}]; aa

Extensions

More terms from Artur Jasinski, Feb 21 2020

A335815 Decimal expansion of Sum_{n>=1} 1/z(n)^4 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 3, 7, 1, 7, 2, 5, 9, 9, 2, 8, 5, 2, 6, 9, 6, 8, 6, 1, 6, 4, 8, 6, 6, 2, 6, 2, 4, 7, 1, 7, 4, 0, 5, 7, 8, 4, 5, 3, 6, 5, 0, 8, 8, 9, 7, 3, 0, 0, 8, 3, 2, 1, 3, 5, 7, 5, 5, 0, 6, 3, 7, 1, 8, 4, 6, 1, 3, 3, 2, 9, 8, 8, 4, 5, 7, 2, 8, 1, 3, 7, 2, 9, 7, 6, 0, 3, 5, 7, 2, 3, 3, 7, 4, 2, 4, 2, 9, 6, 0, 2, 8, 3, 7, 0, 0
Offset: 0

Views

Author

Artur Jasinski, Jun 25 2020

Keywords

Comments

Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; this sequence.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.

Examples

			0.0000371725992852696861648662624717405784536508897300...
		

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0,0},RealDigits[N[-1/12*(D[Log[Zeta[x]],{x,4}]/. x -> 1/2) - 1/24 Pi^4 -(Zeta[4, 1/4] - Zeta[4, 3/4])/64 + 16, 105]][[1]]]

Formula

Equals 16-Pi^4/24+(Zeta[4,3/4]-Zeta[4,1/4])/64-(Log[Zeta[x]]''''[1/2])/24

A335826 Decimal expansion of Sum_{n>=1} 1/z(n)^6 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 4, 1, 7, 3, 9, 3, 1, 4, 0, 0, 9, 7, 3, 2, 7, 9, 6, 9, 5, 3, 8, 1, 5, 5, 6, 0, 9, 4, 8, 2, 0, 9, 0, 7, 0, 3, 6, 8, 8, 3, 0, 0, 8, 5, 0, 9, 0, 9, 8, 1, 1, 8, 7, 1, 5, 9, 9, 9, 3, 6, 4, 2, 1, 7, 9, 0, 5, 3, 9, 4, 6, 3, 1, 6, 8, 9, 6, 4, 0, 8, 1, 9, 5, 5, 0, 6, 7, 4, 2, 0, 4, 6, 8, 3, 8, 8, 8, 3, 4, 2, 3, 0, 5
Offset: 0

Views

Author

Artur Jasinski, Jun 25 2020

Keywords

Comments

Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.

Examples

			0.000000144173931400973279695381556....
		

Crossrefs

Programs

  • Mathematica
    m = 3; Join[{0, 0, 0, 0, 0, 0},RealDigits[N[((-1)^m (2^(2 m) - ((2^(2 m) - 1) Zeta[2 m] + (Zeta[2 m, 1/4] - Zeta[2 m, 3/4])/2^(2 m))/4 - (D[Log[Zeta[x]], {x, 2 m}] /. x -> 1/2)/(2 (2 m - 1)!) )), 105]][[1]]]

Formula

Universal formula for Sum_{n>=1} 1/z(n)^(2m) published in Voros 2002-2003 p. 22 (see Mathematica procedure below).

A195423 Decimal expansion of -2B = sum(r in Z, 1/(r*(1-r))), where Z is the set of zeros of the Riemann zeta function which lie in the strip 0 <= Re(z) <= 1.

Original entry on oeis.org

0, 4, 6, 1, 9, 1, 4, 1, 7, 9, 3, 2, 2, 4, 2, 0, 6, 7, 6, 2, 8, 6, 2, 0, 4, 9, 5, 8, 1, 2, 9, 9, 0, 5, 8, 3, 2, 4, 3, 8, 6, 4, 2, 5, 4, 3, 0, 4, 1, 0, 1, 5, 1, 9, 0, 5, 0, 7, 8, 4, 1, 4, 4, 4, 2, 5, 9, 4, 2, 7, 1, 2, 9, 5, 3, 4, 4, 9, 1, 5, 9, 9, 4, 1, 5, 9, 7, 1, 3, 9, 0, 2, 3, 4, 1, 9, 6, 6, 6, 7, 2
Offset: 0

Views

Author

Jonathan Sondow, Sep 18 2011

Keywords

Comments

See A074760 for references and links.

Examples

			-2B = gamma + 2 - log(4*Pi) = 0.046191417932242...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ EulerGamma + 2 - Log[4*Pi], 105], 10, 100] [[1]]
  • PARI
    Euler-log(4*Pi)+2 \\ Charles R Greathouse IV, Mar 10 2016

Formula

As a constant, equals 2*A074760.

A355283 Decimal expansion of the constant B(3) = Sum_{n>=1} Sum_{m>=n+1} 1/(z(n)*z(m))^3 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 9, 4, 0, 3, 3, 3, 7, 5, 4, 0, 6, 3, 6, 9, 8, 3, 6, 7, 2, 7, 2, 4, 8, 7, 9, 8, 1, 5, 4, 7, 5, 0, 6, 6, 4, 5, 0, 0, 6, 4, 5, 6, 7, 0, 1, 0, 0, 0, 0, 1, 0, 8, 9, 6, 8, 8, 8, 7, 7, 9, 5, 3, 1, 0, 3, 1, 0, 9, 3, 5, 3, 2, 5, 7, 7, 2, 6, 0, 6, 5, 8, 0, 3, 8, 6, 3, 6, 8, 8, 3, 1, 7, 5, 3, 5, 1, 5, 1, 8, 8, 4, 4, 6, 0, 5, 1, 7, 4
Offset: 0

Views

Author

Artur Jasinski, Aug 20 2022

Keywords

Examples

			0.0000001940333754063698367... = 1.940333754063698367*10^(-7).
		

Crossrefs

Formula

Equals (A333360^2 - A335826)/2.
No simpler formula is known.

A246843 Decimal expansion of C, a constant associated with the estimation of the maximum of |zeta(1+i*t)|.

Original entry on oeis.org

0, 8, 9, 3, 2, 6, 5, 2, 2, 3, 4, 3, 5, 5, 1
Offset: 0

Views

Author

Jean-François Alcover, Sep 05 2014

Keywords

Examples

			-0.089326522343551...
		

Crossrefs

Programs

  • Mathematica
    digits = 15; precision = 200; u0 = 10^8; du = 10^8; tail[u_] := -(1 + Log[2*Pi*u])/(2*u); Clear[f]; f[u_] := f[u] = 1 - Log[2] + NIntegrate[Log[BesselI[0, t]]/t^2, {t, 0, 2} , WorkingPrecision -> precision] + NIntegrate[(Log[BesselI[0, t]] - t)/t^2, {t, 2, u}, WorkingPrecision -> precision, MaxRecursion -> 20 ] + tail[u]; f[u0]; f[u = u0 + du]; While[RealDigits[f[u], 10, digits + 4] != RealDigits[f[u - du], 10, digits + 4], Print["u = ", u, " ", f[u]]; u = u + du]; Join[{0}, RealDigits[f[u], 10, digits] // First]

Formula

1 - log(2) + integral_{0..2} log(BesselI(0, t))/t^2 dt + integral_{2..infinity} (log(BesselI(0, t)) - t)/t^2 dt.

Extensions

Typo in the formula corrected by Vaclav Kotesovec, Sep 17 2014

A337365 Decimal expansion of imaginary part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function and i=sqrt(-1).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 4, 3, 8, 2, 6, 9, 3, 1, 2, 5, 0, 6, 9, 5, 3
Offset: 0

Views

Author

Artur Jasinski, Aug 26 2020

Keywords

Comments

For the decimal expansion of the real part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function see A337404.
Sum_{m>=1} 1/(1/2 + i*z(m))^1 = 0.01154785448306... - i*A where 0.01154785448306 = A074760/2 and A > 10.5.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 = -0.0230771586479... - i*0.000728434... where -0.0230771586479 = A245275/2
Sum_{m>=1} 1/(1/2 + i*z(m))^3 = -0.000055579115726... + i*0.0007262105... where -0.000055579115726 = A245276/2
Sum_{m>=1} 1/(1/2 + i*z(m))^4 = 0.0000368136106308... + i*0.0000044382...
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/z(m)^6 = 0.0000001441739314...; see A335826.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276

Examples

			0.000004438269312506953
		

Crossrefs

Programs

  • Mathematica
    (* 7-day-long procedure *)
    kk = 0; Do[kk = kk + 1/(N[ZetaZero[n], 100])^4 , {n, 1, 1000000}]; Take[Join[{0, 0, 0, 0, 0}, RealDigits[Im[kk]][[1]]], 11]

Formula

No explicit formula is known.
Previous Showing 11-20 of 25 results. Next