cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A095778 Values of n for which A095777(n) is 9 (those terms which are expressible in decimal digits for bases 2 through 10, but not for base 11).

Original entry on oeis.org

10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 131, 142, 153, 164, 175, 186, 197, 208, 219, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 252, 263, 274, 285, 296, 307, 318, 329, 340, 351, 352, 353
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Comments

Numbers with at least one digit A (=10) in their representation in base 11. Complementary sequence to A171397. - François Marques, Oct 11 2020

Examples

			a(5)=54 because 54 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 11. Like so: 110110, 2000, 312, 204, 130, 105, 66, 60, 54. In base 11, 54 is 4A.
		

Crossrefs

Cf. A095777.
Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), this sequence (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=9 then S := [op(S), n]; fi; fi; od; S;
    # or
    seq(`if`(numboccur(10, convert(n, base, 11))>0, n, NULL), n=0..1000); # François Marques, Oct 11 2020
  • Mathematica
    Select[Range[400],Max[IntegerDigits[#,11]]>9&] (* Harvey P. Dale, Sep 30 2018 *)
  • PARI
    isok(m) = #select(x->(x==10), digits(m, 11)) >= 1; \\ François Marques, Oct 11 2020
    
  • Python
    from gmpy2 import digits
    def A095778(n):
        def f(x):
            l = (s:=digits(x,11)).find('a')
            if l >= 0: s = s[:l]+'9'*(len(s)-l)
            return n+int(s)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A216194 a(n) = Smallest b for which the base b representation of n contains at least one 2 (or 0 if no such base exists).

Original entry on oeis.org

0, 3, 0, 0, 3, 3, 3, 3, 4, 4, 3, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 10, 3, 4, 11, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 4, 3, 6, 5, 3, 3, 3, 3, 4, 4, 3, 6, 4, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Nathan Fox, Mar 12 2013

Keywords

Comments

a(n)=3 if and only if n is in A074940.
a(n) > 0 for n >= 5 since 12 is n written in base n-2.
The only perfect k-th powers (k>=2) that can appear in this sequence are 2^k with k a prime number.
The first n for which a(n)=7 is 849.
The first n for which a(n)=8 is 1084.
The first n for which a(n)=10 is 28. The second is 243.
The first n for which a(n)=11 is 31. The second is 58130496.
a(n)<=11 for all n with fewer than 3000 base 10 digits. No n for which a(n)>11 has been found.

Crossrefs

Programs

  • Maple
    firstNTerms:=proc(n) local b,i,rep,L:
    L:=[]:
    for i from 5 to n do
        b:=3:
        while true do
            rep:=convert(i, base, b):
            if evalb(2 in rep) then
                L:=[op(L), b]:
                break:
            fi:
            b:=b+1:
        od:
    od:
    L:
    end:
  • Mathematica
    sb2[n_]:=Module[{b=3},While[DigitCount[n,b,2]<1,b++];b]; Array[sb2,110,5] (* Harvey P. Dale, Jan 16 2016 *)
    Table[SelectFirst[Range[3, 1200], DigitCount[n, #, 2] > 0 &], {n, 5, 120}] (* Michael De Vlieger, Mar 09 2016, Version 10 *)
  • PARI
    a(n) = if ((n<5) && (n!=2), 0, my(b=3); while (! vecsearch(vecsort(digits(n, b)), 2), b++); b);  \\ Michel Marcus, Aug 06 2014, Mar 11 2016

Extensions

Modified the definition to make the offset 1 by Nathan Fox, Mar 10 2016

A337250 Numbers having at least one 3 in their representation in base 4.

Original entry on oeis.org

3, 7, 11, 12, 13, 14, 15, 19, 23, 27, 28, 29, 30, 31, 35, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 75, 76, 77, 78, 79, 83, 87, 91, 92, 93, 94, 95, 99, 103, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119
Offset: 1

Views

Author

François Marques, Sep 19 2020

Keywords

Comments

Complementary sequence of A023717.

Examples

			18 is not in the sequence since it is 102_4 in base 4, but 19 is in the sequence since it is 103_4 in base 4.
		

Crossrefs

Cf. A196032 (at least one 0 in base 4).
Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), this sequence, A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    seq(`if`(numboccur(3, convert(n, base, 4))>0, n, NULL), n=0..100);
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 4 ], 3 ]>0)& ]
  • PARI
    isok(m) = #select(x->(x==3), digits(m, 4)) >= 1; \\ Michel Marcus, Sep 20 2020
    
  • Python
    from gmpy2 import digits
    def A337250(n):
        def f(x):
            l = (s:=digits(x,4)).find('3')
            if l >= 0: s = s[:l]+'2'*(len(s)-l)
            return n+int(s,3)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A337572 Numbers having at least one 4 in their representation in base 5.

Original entry on oeis.org

4, 9, 14, 19, 20, 21, 22, 23, 24, 29, 34, 39, 44, 45, 46, 47, 48, 49, 54, 59, 64, 69, 70, 71, 72, 73, 74, 79, 84, 89, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 129, 134
Offset: 1

Views

Author

François Marques, Sep 19 2020

Keywords

Comments

Complementary sequence to A020654.

Examples

			75 is not in the sequence since it is 300_5 in base 5, but 74 is in the sequence since it is 244_5 in base 5.
		

Crossrefs

Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), this sequence (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    seq(`if`(numboccur(4, convert(n, base, 5))>0, n, NULL), n=0..100);
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 5 ], 4 ]>0)& ]
  • PARI
    isok(m) = #select(x->(x==4), digits(m, 5)) >= 1; \\ Michel Marcus, Sep 20 2020
    
  • Python
    from gmpy2 import digits
    def A337572(n):
        def f(x):
            l = (s:=digits(x,5)).find('4')
            if l >= 0: s = s[:l]+'3'*(len(s)-l)
            return n+int(s,4)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A333656 Numbers having at least one 5 in their representation in base 6.

Original entry on oeis.org

5, 11, 17, 23, 29, 30, 31, 32, 33, 34, 35, 41, 47, 53, 59, 65, 66, 67, 68, 69, 70, 71, 77, 83, 89, 95, 101, 102, 103, 104, 105, 106, 107, 113, 119, 125, 131, 137, 138, 139, 140, 141, 142, 143, 149, 155, 161, 167, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184
Offset: 1

Views

Author

François Marques, Sep 20 2020

Keywords

Comments

Complementary sequence to A037465.

Examples

			22 is not in the sequence since it is 34_6 in base 6, but 23 is in the sequence since it is 35_6 in base 6.
		

Crossrefs

Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), this sequence (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    seq(`if`(numboccur(5, convert(n, base, 6))>0, n, NULL), n=0..100);
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 6 ], 5 ]>0)& ]
  • PARI
    isok(m) = #select(x->(x==5), digits(m, 6)) >= 1;
    
  • Python
    from gmpy2 import digits
    def A333656(n):
        def f(x):
            l = (s:=digits(x,6)).find('5')
            if l >= 0: s = s[:l]+'4'*(len(s)-l)
            return n+int(s,5)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A337141 Numbers having at least one 6 in their representation in base 7.

Original entry on oeis.org

6, 13, 20, 27, 34, 41, 42, 43, 44, 45, 46, 47, 48, 55, 62, 69, 76, 83, 90, 91, 92, 93, 94, 95, 96, 97, 104, 111, 118, 125, 132, 139, 140, 141, 142, 143, 144, 145, 146, 153, 160, 167, 174, 181, 188, 189, 190, 191, 192, 193, 194, 195, 202, 209, 216, 223, 230, 237, 238, 239, 240
Offset: 1

Views

Author

François Marques, Sep 20 2020

Keywords

Comments

Complementary sequence to A020657.

Examples

			33 is not in the sequence since it is 45_7 in base 7, but 34 is in the sequence since it is 46_7 in base 7.
		

Crossrefs

Cf. Numbers with at least one digit b-1 in base b: A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), this sequence (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    seq(`if`(numboccur(6, convert(n, base, 7))>0, n, NULL), n=0..100);
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 7 ], 6 ]>0)& ]
    Select[Range[300],DigitCount[#,7,6]>0&] (* Harvey P. Dale, Dec 23 2020 *)
  • PARI
    isok(m) = #select(x->(x==6), digits(m, 7)) >= 1;
    
  • Python
    from gmpy2 import digits
    def A337141(n):
        def f(x):
            l = (s:=digits(x,7)).find('6')
            if l >= 0: s = s[:l]+'5'*(len(s)-l)
            return n+int(s,6)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A337239 Numbers having at least one 7 in their representation in base 8.

Original entry on oeis.org

7, 15, 23, 31, 39, 47, 55, 56, 57, 58, 59, 60, 61, 62, 63, 71, 79, 87, 95, 103, 111, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135, 143, 151, 159, 167, 175, 183, 184, 185, 186, 187, 188, 189, 190, 191, 199, 207, 215, 223, 231, 239, 247, 248, 249, 250, 251, 252, 253, 254, 255
Offset: 1

Views

Author

François Marques, Sep 20 2020

Keywords

Comments

Complementary sequence to A037474.

Examples

			54 is not in the sequence since it is 66_8 in base 8, but 55 is in the sequence since it is 67_8 in base 8.
		

Crossrefs

Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), this sequence (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    seq(`if`(numboccur(7, convert(n, base, 8))>0, n, NULL), n=0..100);
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 8 ], 7 ]>0)& ]
  • PARI
    isok(m) = #select(x->(x==7), digits(m, 8)) >= 1;
    
  • Python
    def A337239(n):
        def f(x):
            s = oct(x)[2:]
            l = s.find('7')
            if l >= 0:
                s = s[:l]+'6'*(len(s)-l)
            return n+int(s,7)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A081606 Numbers having at least one 1 in their ternary representation.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2003

Keywords

Comments

Complement of A005823.
Integers m such that central Delannoy number A001850(m) == 0 (mod 3). - Emeric Deutsch and Bruce E. Sagan, Dec 04 2003
Integers m such that A026375(m) == 0 (mod 3). - Fabio Visonà, Aug 03 2023

Crossrefs

Programs

  • Mathematica
    Select[Range[100],DigitCount[#,3,1]>0&] (* Harvey P. Dale, Nov 26 2022 *)
  • Python
    from itertools import count, islice
    def A081606_gen(): # generator of terms
        a = 0
        for n in count(1):
            b = int(bin(n)[2:],3)<<1
            yield from range(a+1,b)
            a = b
    A081606_list = list(islice(A081606_gen(),30)) # Chai Wah Wu, Oct 13 2023
    
  • Python
    from gmpy2 import digits
    def A081606(n):
        def f(x):
            s = digits(x>>1,3)
            for i in range(l:=len(s)):
                if s[i]>'1':
                    break
            else:
                return n+int(s,2)
            return n-1+(int(s[:i] or '0',2)+1<Chai Wah Wu, Oct 29 2024

Extensions

More terms from Emeric Deutsch and Bruce E. Sagan, Dec 04 2003

A006996 a(n) = C(2n,n) mod 3.

Original entry on oeis.org

1, 2, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Removing 0's from the sequence gives Thue-Morse sequence A001285 : 1,2,0,2,1,0,0,0,0,2,1,0,1,2,..->1,2,2,1,2,1,1,2,... - Benoit Cloitre, Jan 04 2004
a(n) = 0 if n in A074940, a(n) = 1 if n in A074939, a(n) = 2 if n in A074938.
Central terms of the triangle in A083093. - Reinhard Zumkeller, Jul 11 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006996 n = a083093 (2 * n) n  -- Reinhard Zumkeller, Jul 11 2013
    
  • Mathematica
    Table[ Mod[ Binomial[2n, n], 3], {n, 0, 104}] (* Or *)
    Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 0, 0}, 1 -> {1, 2, 0}, 2 -> {2, 1, 0}})]}], {1}, 7] (* Robert G. Wilson v, Mar 28 2005 *)
  • PARI
    a(n)=if(n==0, return(1)); if(vecmax(Set(digits(n,3)))>1, 0, 1 + n%2) \\ Charles R Greathouse IV, May 09 2016
    
  • Python
    from gmpy2 import digits
    def A006996(n): return 0 if '2' in digits(n,3) else 1+(n&1) # Chai Wah Wu, Jun 26 2025

Formula

a(n) = A000984(n) mod 3.
a(n) = A005704(n) mod 3. - Benoit Cloitre, Jan 04 2004
A fixed point of the morphism : 1 -> 120, 2 -> 210, 0 -> 000. - Philippe Deléham, Jan 08 2004

A370920 Positive integers in whose ternary representation 2 occurs at least once, and every 2 is followed by 0.

Original entry on oeis.org

6, 15, 18, 19, 33, 42, 45, 46, 54, 55, 57, 58, 60, 87, 96, 99, 100, 114, 123, 126, 127, 135, 136, 138, 139, 141, 162, 163, 165, 166, 168, 171, 172, 174, 175, 177, 180, 181, 249, 258, 261, 262, 276, 285, 288, 289, 297, 298, 300, 301, 303, 330, 339, 342, 343
Offset: 1

Views

Author

Clark Kimberling, Mar 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Map[#[[1]] &, Select[Map[{#, #[[1]] > 0 && #[[1]] == #[[2]] &[{Length[
    StringCases[#, "2"]], Length[StringCases[#, "20"]]}] &[
    IntegerString[#, 3]]} &, Range[500]], #[[2]] &]]   (* Peter J. C. Moses, Mar 05 2024 *)

Formula

The ternary representations of 6, 15, and 18 are 20, 120, and 200.
Previous Showing 11-20 of 38 results. Next