cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A036377 Floor[concatenation of seven consecutive numbers from n to n+6 divided by 7].

Original entry on oeis.org

17636, 176366, 335096, 493827, 6525558, 81127287, 969871587, 11272873030, 127287303044, 1300158875916, 1444459020216, 1588759164516, 1733059308816, 1877359453117, 2021659597417, 2165959741717, 2310259886017, 2454560030317
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[#/7]&/@(FromDigits[Flatten[IntegerDigits/@#]]&/@Partition[Range[0,25],7,1])  (* Harvey P. Dale, Feb 03 2011 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003

A075001 Smallest k such that the concatenation of n consecutive numbers starting with k (from k to n+k-1) is a multiple of n; or 0 if no such number exists.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 5, 1, 1, 9, 1, 4, 7, 1, 5, 23, 1, 14, 1, 9, 9, 13, 5, 1, 21, 1, 13, 12, 1, 36, 21, 9, 3, 41, 1, 34, 33, 9, 21, 12, 9, 33, 9, 1, 13, 28, 5, 48, 1, 23, 21, 3, 1, 11, 13, 14, 41, 28, 1, 114, 115, 9, 41, 21, 9, 23, 69, 1, 61, 73, 5, 14, 43, 1, 145, 13, 9, 127, 41, 9, 95
Offset: 1

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Comments

Conjecture: For every n there exists a k.
First occurrence of k where a(n)=k: 1, 103, 4, 13, 8, 105, 14, 87, 11, 699, 55, 29, 23, 19, 114, 261, 102, 97, 178, 219, 26, 121, 17, 151, 92, ..., . - Robert G. Wilson v
a(n)=1 iff n is in A029455. - Robert G. Wilson v
Increasing a(n)'s: 1, 3, 5, 9, 23, 36, 41, 48, 114, 115, 145, 166, 175, 221, 251, ..., at n = 1, 4, 8, 11, 17, 31, 35, 49, 61, 62, 76, 85, 122, 133, 170, 179, 217, 229, ..., . - Robert G. Wilson v

Examples

			a(11) = 9 as 910111213141516171819 the concatenation of 11 numbers from 9 to 19 is divisible by 11 (11*82737383012865106529).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 1, id = Range@n}, While[k = FromDigits@Flatten@IntegerDigits@id/n; ! IntegerQ@k, id++; c++ ]; c]; Array[f, 82] (* Robert G. Wilson v, Oct 20 2007 *)
  • PARI
    /* The following program assumes the conjecture is true. */ /* It has found nonzero a(n) for n up to 500. */ {for(n=1,500, k=0; until(s%n==0,k++; s=0; for(m=k,k+n-1, s=s*(10^length(Str(m)))+m)); print1(k,","))}
    
  • PARI
    a(n) = {my(ld = 1, hd = n, qd, m = Mod(1, n), pow10, qdn = #digits(n), t=log(10*n+.5)\log(10)); qd = n*t+t-10^t\9; pow10 = Mod(10, n)^(qd-1); for(i = 2, n, m = m * Mod(10, n)^#digits(i) + i; ); while(1, if(lift(m) == 0, return(ld)); m -= ld * pow10; hd++; m = m * Mod(10, n)^#digits(hd) + hd; ld++; pow10*=10^(#digits(hd) - #digits(ld)); ) } \\ David A. Corneth, Aug 23 2020

Extensions

More terms from Rick L. Shepherd, Sep 03 2002

A181718 a(n) = (1/9)*(10^(2*n) + 10^n - 2).

Original entry on oeis.org

0, 12, 1122, 111222, 11112222, 1111122222, 111111222222, 11111112222222, 1111111122222222, 111111111222222222, 11111111112222222222, 1111111111122222222222, 111111111111222222222222, 11111111111112222222222222, 1111111111111122222222222222
Offset: 0

Views

Author

Paul Curtz, Nov 17 2010

Keywords

Comments

In decimal, n times 1 followed by n times 2.
a(n) = 3 + 3*3, 33 + 33*33, 333 + 333*333, written with 3,6,9,12,... = A008585(n+1) 3's.

Crossrefs

Programs

  • Magma
    [(1/9)*(10^(2*n) + 10^n - 2): n in [0..20]]; // Vincenzo Librandi, Aug 04 2011
    
  • Mathematica
    Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{0,12,1122},20] (* Harvey P. Dale, Jul 31 2013 *)
  • PARI
    vector(30, n, n--; (10^(2*n) + 10^n - 2)/9) \\ G. C. Greubel, Nov 02 2018
    
  • Python
    for n in range(30):
        print((10**(2*n)+10**n-2)//9, end=', ')
    # Stefano Spezia, Nov 02 2018
    
  • SageMath
    [(100^n +10^n -2)//9 for n in range(31)] # G. C. Greubel, Mar 25 2024

Formula

a(n) = A002277(n)*A093137(n).
G.f.: 6*x*(2-35*x) / ( (1-x)*(1-10*x)*(1-100*x) ). - R. J. Mathar, Feb 28 2011
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3), a(0)=0, a(1)=12, a(2)=1122. - Harvey P. Dale, Jul 31 2013
a(n) = (A074992(n) - 1)/3. - Michel Marcus, Sep 14 2013
E.g.f.: (1/9)*(-2*exp(x) + exp(10*x) + exp(100*x)). - G. C. Greubel, Mar 25 2024

A243162 Numbers n such that n^2 divides n.n.n where dot "." means concatenation.

Original entry on oeis.org

1, 3, 13, 21, 37, 39, 91, 1443, 3367, 9901, 157737, 333667, 999001, 3075403, 9226209, 14287143, 33336667, 99990001, 1171182883, 1224848037, 1286294191, 1397863441, 1428557143, 1469179621, 1535254357, 1568996211, 1753536967, 1792076241, 1839599913, 1891910811
Offset: 1

Views

Author

Hans Havermann, May 31 2014

Keywords

Comments

Number of d-digit solutions for d = 1..100: 2, 5, 0, 3, 0, 3, 2, 3, 0, 39, 0, 2, 0, 106, 0, 3, 3, 2, 0, 441, 4, 14, 0, 5, 0, 15, 2, 283, 0, 23, 0, 61, 0, 24, 21, 4, 0, 22, 0, 240, 0, 34, 0, 96, 3, 30, 0, 6, 16, 281, 0, 216, 0, 22, 5, 3894, 2, 10, 0, 149, 2, 11, 0, 407, 0, 25, 0, 2136, 0, 53983, 0, 12, 1, 29, 11, 1872, 99, 20, 0, 6984, 0, 45, 0, 279, 32, 10, 5, 15928, 0, 213, 24, 791, 0, 20, 14, 44, 0, 713, 12, 89804.
Numbers n such that n divides 100^d+10^d+1, where 10^(d-1)<=n<10^d. - Robert Israel, Jan 11 2017

Examples

			21^2 divides 212121; 91^2 divides 919191; so both 21 and 91 are in the sequence.
		

Crossrefs

Cf. A147553 (n^2 divides n.n), A147554 (primes in this sequence).
Contains A074992 and A168624.

Programs

  • Maple
    Res:= {}:
    for d from 1 to 15 do
      Res:= Res union select(t -> t >= 10^(d-1) and t < 10^d,
       numtheory:-divisors(100^d+10^d+1))
    od:
    sort(convert(Res,list)); # Robert Israel, Jan 11 2017
  • Mathematica
    Do[d=Divisors[100^i+10^i+1];s=Select[d,Length[IntegerDigits[#]]==i&];If[Length[s]>0,Do[Print[s[[j]]],{j,Length[s]}]],{i,42}]

A304290 Numbers k such that k-1 is a substring of k^2.

Original entry on oeis.org

9, 37, 99, 370, 999, 3367, 9999, 22186, 99999, 221860, 333667, 625001, 625009, 859415, 926968, 999999, 1507152, 3125001, 3701562, 7012141, 9375009, 9999999, 20506249, 28658098, 33336667, 46875009, 78125001, 79632152, 86609391, 98089448, 99999999, 306481073
Offset: 1

Views

Author

Paolo P. Lava, May 24 2018

Keywords

Comments

The repdigit sequence A002283, apart from the first term 0, is a subset.
In fact (999...9)^2 = (10^n-1)^2 = 10^n((10^n-1)-1)+1 = 10^n(999...9-1)+1 = 10^n(999...8)+1 = 999...8000...1.
The sequence A074992, apart from the first term 1, is a subsequence. - Michel Marcus, May 27 2018

Examples

			9^2 = 81 and 9-1 = 8 is a substring.
37^2 = 1369 and 37-1 = 36 is a substring.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local a,b,k,n; a:=2; b:=1;
    for n from 1 to q do for k from 1 to ilog10(a^2)-ilog10(b)+1 do
    if b=trunc(a^2/10^(k-1)) mod 10^(ilog10(b)+1) then print(a); fi; od;
    b:=a; a:=a+1; od; print(); end: P(10^8);
  • Mathematica
    Select[Range[10^6], SequenceCount[IntegerDigits[#^2], IntegerDigits[# - 1]] > 0 &] (* Michael De Vlieger, May 27 2018 *)
  • Python
    A304290_list = [k for k in range(10**6) if str(k-1) in str(k**2)] # Chai Wah Wu, Oct 22 2018

Extensions

a(32) from Jon E. Schoenfield, Jun 01 2018
Previous Showing 11-15 of 15 results.