cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A210463 Decimal expansion of the absolute value of the imaginary part of the two complex roots of x^3-x^2+1.

Original entry on oeis.org

7, 4, 4, 8, 6, 1, 7, 6, 6, 6, 1, 9, 7, 4, 4, 2, 3, 6, 5, 9, 3, 1, 7, 0, 4, 2, 8, 6, 0, 4, 3, 9, 2, 3, 6, 7, 2, 4, 0, 1, 6, 3, 0, 8, 4, 9, 0, 6, 8, 2, 4, 5, 7, 4, 2, 0, 1, 8, 4, 7, 5, 9, 2, 1, 5, 4, 4, 1, 5, 2, 1, 7, 8, 3, 7, 8, 3, 9, 7, 6, 7, 7, 9, 1, 1, 4, 3, 7, 5, 4, 9, 3, 2, 9, 6, 4, 1, 5, 9, 0, 3, 9, 2, 5, 2, 8, 0, 4, 8, 7, 3, 3, 7, 7, 3, 6, 6, 0, 3, 3, 4, 3, 8, 9, 4
Offset: 0

Views

Author

R. J. Mathar, Jan 22 2013

Keywords

Comments

An algebraic number of degree 6. - Charles R Greathouse IV, Apr 14 2014
The denominator of this algebraic number is 2, since its double is an algebraic integer. - Charles R Greathouse IV, Nov 12 2014

Examples

			0.744861766619744236593170428604392367240163...
		

Crossrefs

Programs

  • Maple
    A075778neg := proc()
            1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
    end proc:
    A210463 := proc()
            local a075778,a210462 ;
            a075778 := A075778neg() ;
            a210462 := A210462() ;
            -1/a075778-a210462^2 ;
            sqrt(%) ;
    end proc:
    evalf(A210463()) ;
  • Mathematica
    -((2^(1/3)*(25 - 3*Sqrt[69])^(2/3) - 2)/(2*2^(2/3)*Sqrt[3]*(25 - 3*Sqrt[69])^(1/3))) // RealDigits[#, 10, 125]& // First (* Jean-François Alcover, Feb 20 2013 *)
  • PARI
    polrootsreal(64*x^6+32*x^4+4*x^2-23)[2] \\ Charles R Greathouse IV, Apr 14 2014

Formula

Equals sqrt(1/A075778-A210462^2).

A230154 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=6.

Original entry on oeis.org

8, 9, 8, 6, 5, 3, 7, 1, 2, 6, 2, 8, 6, 9, 9, 2, 9, 3, 2, 6, 0, 8, 7, 5, 7, 2, 2, 0, 4, 6, 8, 0, 5, 8, 8, 6, 2, 6, 0, 4, 4, 8, 2, 2, 0, 0, 9, 3, 4, 3, 9, 6, 9, 6, 6, 8, 5, 5, 3, 1, 5, 5, 6, 5, 4, 7, 3, 2, 5, 8, 4, 7, 0, 1, 7, 2, 1, 9, 7, 8, 2, 4, 6, 8, 7, 6, 8
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-6.

Examples

			0.8986537126286992932608757220468058862604482200934396966...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-6);
  • Mathematica
    RealDigits[x/.FindRoot[x^7+x^6==1,{x,1},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Dec 30 2013 *)

Formula

Equals 1/A230160. - Hugo Pfoertner, Oct 15 2024

A230156 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=8.

Original entry on oeis.org

9, 2, 1, 5, 9, 9, 3, 1, 9, 6, 3, 3, 9, 8, 3, 0, 0, 6, 2, 9, 9, 4, 3, 0, 3, 1, 5, 2, 0, 1, 9, 6, 9, 3, 9, 4, 2, 5, 3, 6, 8, 0, 3, 8, 4, 2, 5, 3, 3, 7, 0, 7, 8, 9, 8, 7, 9, 6, 5, 4, 5, 1, 6, 4, 4, 4, 7, 1, 4, 5, 9, 4, 2, 4, 9, 1, 7, 4, 3, 0, 8, 2, 7, 9, 1, 7, 9
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-8.

Examples

			0.9215993196339830062994303152019693942536803842533707898...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-8);
  • Mathematica
    Root[x^9 + x^8 - 1, 1] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230157 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=9.

Original entry on oeis.org

9, 2, 9, 5, 7, 0, 1, 2, 8, 2, 3, 2, 0, 2, 2, 8, 6, 4, 2, 0, 4, 4, 1, 3, 0, 3, 6, 9, 1, 4, 4, 6, 4, 1, 2, 5, 4, 3, 5, 3, 2, 5, 8, 5, 3, 0, 0, 2, 0, 2, 4, 8, 3, 3, 6, 3, 0, 2, 0, 5, 5, 4, 5, 2, 1, 5, 0, 9, 8, 7, 8, 5, 3, 0, 6, 5, 4, 2, 7, 2, 6, 2, 1, 3, 5, 0, 7
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-9.

Examples

			0.9295701282320228642044130369144641254353258530020248336...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-9);
  • Mathematica
    Root[x^10 + x^9 - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230153 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=5.

Original entry on oeis.org

8, 8, 1, 2, 7, 1, 4, 6, 1, 6, 3, 3, 5, 6, 9, 5, 9, 4, 4, 0, 7, 6, 4, 9, 1, 6, 2, 8, 4, 1, 3, 7, 2, 0, 2, 5, 2, 7, 9, 1, 9, 3, 9, 7, 9, 3, 7, 8, 8, 9, 5, 2, 6, 3, 6, 0, 6, 7, 6, 3, 8, 4, 6, 9, 5, 7, 7, 6, 8, 7, 6, 8, 4, 6, 8, 6, 3, 2, 4, 6, 7, 3, 5, 5, 9, 1, 0
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-5.

Examples

			0.8812714616335695944076491628413720252791939793788952636...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-5);
  • Mathematica
    Root[x^6 + x^5 - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230155 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=7.

Original entry on oeis.org

9, 1, 1, 5, 9, 2, 3, 5, 3, 4, 8, 2, 0, 5, 4, 9, 1, 8, 6, 2, 8, 6, 7, 3, 6, 7, 2, 4, 9, 4, 0, 5, 0, 1, 7, 7, 3, 7, 5, 8, 8, 4, 6, 9, 4, 3, 6, 1, 4, 1, 3, 9, 4, 6, 9, 5, 5, 7, 6, 2, 6, 5, 3, 9, 2, 3, 4, 4, 3, 4, 8, 8, 2, 5, 2, 4, 0, 4, 1, 2, 8, 9, 8, 9, 5, 8, 0, 1, 2, 7, 5, 4, 7, 3, 9, 0, 7, 0, 9, 4, 3, 0, 0, 0, 1, 9, 6, 8, 6, 8, 7, 3, 6, 8, 9, 5, 6, 5, 8, 7, 3, 2, 9, 6, 8, 1, 6, 2, 9, 4
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-7.

Examples

			0.9115923534820549186286736724940501773758846943614139469...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-7);
  • Mathematica
    Root[x^8 + x^7 - 1, 2] // RealDigits[#, 10, 130]& // First (* Jean-François Alcover, Feb 18 2014 *)

A350892 Number of partitions of n such that 3*(smallest part) = (number of parts).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, 15, 18, 22, 27, 33, 40, 48, 58, 69, 82, 98, 115, 135, 158, 184, 214, 248, 286, 330, 379, 435, 497, 569, 648, 739, 840, 955, 1082, 1228, 1388, 1572, 1775, 2005, 2259, 2549, 2867, 3228, 3626, 4076, 4571, 5131, 5745, 6438, 7199, 8053, 8992, 10045, 11199
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Crossrefs

Column 3 of A350889.

Programs

  • Mathematica
    CoefficientList[Series[Sum[x^(3k^2)/Product[1-x^j,{j,3k-1}],{k,64}],{x,0,64}],x] (* Stefano Spezia, Jan 22 2022 *)
    Table[Count[IntegerPartitions[n],?(3#[[-1]]==Length[#]&)],{n,70}] (* _Harvey P. Dale, Jul 13 2023 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, 3*k-1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..3*k-1} (1-x^j).
a(n) ~ c * exp(2*sqrt((5*log(A075778)^2 + 2*polylog(2, 1 - A075778))*n)) / n^(3/4), where c = (3*log(A075778)^2 + polylog(2, A075778^2))^(1/4) / (2*sqrt(3*Pi*(1 + A075778)*(2 + 3*A075778))) = 0.0582980106266835787... - Vaclav Kotesovec, Jan 24 2022, updated Oct 14 2024

A262990 G.f. A(x) satisfies: a([n/r^2]) = [x^n] A(x)^2/x and a([n/r^3]) = [x^n] A(x)^3/x^2, for n>=1, where r^2 + r^3 = 1.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 10, 20, 22, 40, 51, 67, 114, 126, 203, 230, 354, 468, 571, 885, 908, 1486, 1674, 2250, 3045, 3586, 5418, 5322, 8186, 9560, 12234, 16341, 17976, 27912, 26970, 38435, 46383, 57024, 76794, 80805, 125205, 116376, 165914, 201580, 232352, 322980, 332388, 508710, 456154, 645661, 800495, 886018, 1241190, 1226382, 1916682, 1693454, 2290704, 2935492
Offset: 1

Views

Author

Paul D. Hanna, Oct 06 2015

Keywords

Comments

The integer floor values, [n/r^2] and [n/r^3] where r^2 + r^3 = 1, form Beatty sequences and thus together contain all the positive integers without repetition.
Here r = 6 / ( (108 + 12*sqrt(69))^(1/3) + (108 - 12*sqrt(69))^(1/3) ) = 0.75487766624669276.... satisfies r^2 + r^3 = 1.
Not equal to A090845.
What is the rate of growth of this sequence?

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 10*x^7 + 20*x^8 + 22*x^9 + 40*x^10 + 51*x^11 + 67*x^12 + 114*x^13 + 126*x^14 + 203*x^15 +...
where the terms are formed from the union of coefficients in A(x)^2 and A(x)^3.
The coefficients of A(x)^2 begin:
A^2 = [1, 2, 5, 10, 20, 40, 67, 126, 203, 354, 571, 908, 1486, 2250, 3586, 5322, 8186, 12234, 17976, 26970, 38435, 57024, 80805, 116376, 165914, 232352,...]
and form the terms of this sequence at positions [n/r^2] for n>=1:
{[n/r^2]} = [1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 49, 50, 52, 54, 56, 57, 59, ...].
The coefficients of A(x)^3 begin:
A^3 = [1, 3, 9, 22, 51, 114, 230, 468, 885, 1674, 3045, 5418, 9560, 16341, 27912, 46383, 76794, 125205, 201580, 322980, 508710, 800495, 1241190, ...]
and form the terms of this sequence at positions [n/r^3] for n>=1:
{[n/r^3]} = [2, 4, 6, 9, 11, 13, 16, 18, 20, 23, 25, 27, 30, 32, 34, 37, 39, 41, 44, 46, 48, 51, 53, 55, 58, 60, 62, 65, 67, 69, 72, ...].
		

Crossrefs

Cf. A075778.

Programs

  • PARI
    {a(n) = local(A=vector(n+1),B=A,C=A,r=6/((108+12*sqrt(69))^(1/3)+(108-12*sqrt(69))^(1/3))); A[1]=1;A[2]=1;
    for(i=1,ceil(log(#A)/log(1/r)),
    B=vector(floor(#A/r^2));for(n=1,#A,m=floor(n/r^2);if(m<=#B,B[m]=Vec(Ser(A)^2)[n]));
    C=vector(floor(#A/r^3));for(n=1,#A,m=floor(n/r^3);if(m<=#C,C[m]=Vec(Ser(A)^3)[n]));
    A=vector(#A,n,if(C[n]==0,B[n],C[n]));); A[n]}
    for(n=1,80,print1(a(n),", "))

A276519 Expansion of Product_{k>=1} 1/(1 - x^(2*k) - x^(3*k)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 17, 19, 34, 37, 61, 75, 112, 138, 209, 256, 376, 478, 675, 866, 1222, 1566, 2175, 2830, 3873, 5055, 6900, 9011, 12213, 16045, 21599, 28429, 38191, 50290, 67341, 88884, 118669, 156751, 209018, 276200, 367734, 486376, 646688
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 15 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[1/Product[1-x^(2*k)-x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * p / r^n, where r = A075778 = 1/A060006 = 0.7548776662466927600495... is the real root of the equation r^3 + r^2 - 1 = 0, p = Product_{n>1} 1/(1 - r^(2*n) - r^(3*n)) = 3.820450591662541853... and c = 0.41149558866264576338190038... is the real root of the equation -1 + 8*c - 23*c^2 + 23*c^3 = 0.

A276526 Expansion of Product_{k>=1} 1/(1 - x^(2*k) + x^(3*k)).

Original entry on oeis.org

1, 0, 1, -1, 2, -2, 3, -4, 7, -8, 11, -15, 22, -27, 37, -51, 70, -90, 121, -162, 220, -288, 381, -512, 688, -902, 1197, -1598, 2127, -2809, 3722, -4949, 6581, -8699, 11519, -15301, 20305, -26862, 35581, -47208, 62591, -82859, 109756, -145506, 192856, -255388
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Product[1-x^(2*k)+x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * p / r^n, where r = -A075778 = -0.7548776662466927600495... is the real root of the equation r^3 - r^2 + 1 = 0, p = Product_{n>1} 1/(1 - r^(2*n) + r^(3*n)) = 1.9844809074648434... and c = 0.41149558866264576338190038... is the real root of the equation -1 + 8*c - 23*c^2 + 23*c^3 = 0.
Previous Showing 11-20 of 24 results. Next