cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A166100 Sum of those positive i <= 2n+1, for which J(i,2n+1)=+1. Here J(i,k) is the Jacobi symbol.

Original entry on oeis.org

1, 1, 5, 7, 27, 22, 39, 15, 68, 76, 63, 92, 250, 117, 203, 186, 165, 175, 333, 156, 410, 430, 270, 423, 1029, 357, 689, 440, 513, 767, 915, 504, 780, 1072, 759, 994, 1314, 725, 1155, 1343, 2187, 1577, 1360, 957, 1958, 1547, 1395, 1330, 2328, 1485, 2525
Offset: 0

Views

Author

Antti Karttunen, Oct 13 2009. Erroneous name corrected Oct 20 2009

Keywords

Comments

Note that this sequence is not equal to the sum of the quadratic residues of 2n+1 in range [1,2n+1], and thus NOT a bisection of A165898.

Examples

			For n=5, we get odd number 11 (2*5+1), and J(i,11) = 1,-1,1,1,1,-1,-1,-1,1,-1,0 when i ranges from 1 to 11, J(i,11) getting value 1 when i=1, 3, 4, 5 and 9, thus a(5)=22.
		

Crossrefs

Scheme-code for jacobi-symbol is given at A165601.

Programs

  • Mathematica
    Table[Total[Flatten[Position[JacobiSymbol[Range[2n+1],2n+1],1]]],{n,0,50}] (* Harvey P. Dale, Jun 19 2013 *)
  • Python
    from sympy import jacobi_symbol as J
    def a(n): return sum([i for i in range(1, 2*n + 2) if J(i, 2*n + 1)==1]) # Indranil Ghosh, Jun 12 2017

A165909 a(n) is the sum of the quadratic residues of n.

Original entry on oeis.org

0, 1, 1, 1, 5, 8, 7, 5, 12, 25, 22, 14, 39, 42, 30, 14, 68, 60, 76, 35, 70, 110, 92, 42, 125, 169, 126, 84, 203, 150, 186, 72, 165, 289, 175, 96, 333, 342, 208, 135, 410, 308, 430, 198, 225, 460, 423, 124, 490, 525, 408, 299, 689, 549, 385, 252, 532, 841, 767, 270
Offset: 1

Views

Author

Keywords

Comments

The table below shows n, the number of nonzero quadratic residues (QRs) of n (A105612), the sum of the QRs of n and the nonzero QRs of n (A046071) for n = 1..10.
..n..num QNRs..sum QNRs.........QNRs
..1.........0.........0
..2.........1.........1.........1
..3.........1.........1.........1
..4.........1.........1.........1
..5.........2.........5.........1..4
..6.........3.........8.........1..3..4
..7.........3.........7.........1..2..4
..8.........2.........5.........1..4
..9.........3........12.........1..4..7
.10.........5........25.........1..4..5..6..9
When p is prime >= 5, a(p) is a multiple of p by a variant of Wolstenholme's theorem (see A076409 and A076410). Robert Israel remarks that we don't need Wolstenholme, just the fact that Sum_{x=1..p-1} x^2 = p*(2*p-1)*(p-1)/6. - Bernard Schott, Mar 13 2019

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 4th ed., Oxford Univ. Press, 1960, pp. 88-90.

Crossrefs

Row sums of A046071 and of A096008.

Programs

  • Haskell
    import Data.List (nub)
    a165909 n = sum $ nub $ map (`mod` n) $
                            take (fromInteger n) $ tail a000290_list
    -- Reinhard Zumkeller, Aug 01 2012
    
  • Mathematica
    residueQ[n_, k_] := Length[Select[Range[Floor[k/2]], PowerMod[#, 2, k] == n&, 1]] == 1;
    a[n_] := Select[Range[n-1], residueQ[#, n]&] // Total;
    Array[a, 60] (* Jean-François Alcover, Mar 13 2019 *)
  • PARI
    a(n) = sum(k=0, n-1, k*issquare(Mod(k,n))); \\ Michel Marcus, Mar 13 2019

A125616 (Sum of the quadratic nonresidues of prime(n)) / prime(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 7, 7, 9, 9, 10, 11, 14, 13, 16, 15, 17, 21, 18, 22, 22, 22, 24, 25, 28, 28, 27, 28, 34, 35, 34, 36, 37, 41, 39, 41, 47, 43, 47, 45, 54, 48, 49, 54, 54, 59, 59, 57, 58, 67, 60, 66, 64, 72, 67, 73, 69, 70, 72, 73, 78, 87, 78, 79, 84, 84, 89, 87, 88, 99, 96, 93, 96
Offset: 3

Views

Author

Nick Hobson, Nov 30 2006

Keywords

Comments

Always an integer for primes >= 5.

Examples

			The quadratic nonresidues of 7=prime(4) are 3, 5 and 6. Hence a(4) = (3+5+6)/7 = 2.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 185.

Crossrefs

Programs

  • Maple
    a:= proc(n) local p;
       p:= ithprime(n);
       convert(select(t->numtheory:-legendre(t,p)=-1, [$1..p-1]),`+`)/p;
    end proc:
    seq(a(n),n=3..100); # Robert Israel, May 10 2015
  • Mathematica
    Table[Total[Flatten[Position[Table[JacobiSymbol[a, p], {a, p - 1}], -1]]]/ p, {p, Prime[Range[3, 100]]}] (* Geoffrey Critzer, May 10 2015 *)
  • PARI
    vector(73, m, p=prime(m+2); t=1; for(i=2, (p-1)/2, t+=((i^2)%p)); (p-1)/2-t/p)

Formula

a(n) = A125615(n)/prime(n).
If prime(n) = 4k+1 then a(n) = k = A076410(n).

A125617 Sum of the squares of the quadratic nonresidues of prime(n).

Original entry on oeis.org

0, 4, 13, 70, 253, 299, 680, 1235, 2691, 3683, 6169, 7733, 10414, 13717, 22278, 23373, 38586, 35563, 51255, 76041, 60298, 96222, 103916, 110894, 143172, 165337, 206000, 218494, 206991, 229164, 377698, 413305, 410726, 471766, 535357, 647941, 625331
Offset: 1

Views

Author

Nick Hobson, Nov 30 2006

Keywords

Comments

For all n > 3, prime(n) divides a(n).

Examples

			The quadratic nonresidues of 7=prime(4) are 3, 5 and 6. Hence a(4) = 3^2 + 5^2 + 6^2 = 70.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 185.

Crossrefs

Programs

  • Mathematica
    Table[Total[Complement[Range[p-1],Union[Table[PowerMod[k, 2, p], {k, p}]]]^2],{p,Prime@Range[37]}] (* James C. McMahon, Dec 19 2024 *)
  • PARI
    vector(37, n, p=prime(n); t=1; for(i=2, (p-1)/2, t+=((i^2)%p)^2); p*(p-1)*(2*p-1)/6-t)

A177860 Product of the quadratic residues of prime(n).

Original entry on oeis.org

1, 1, 4, 8, 540, 12960, 1797120, 22619520, 465813504, 267346759680000, 216218419200000, 199658024013127680000, 136256285631578112000000, 12446179270879850496000000, 34611344543529418987929600
Offset: 1

Views

Author

Jonathan Sondow, May 14 2010

Keywords

Comments

a(n) == (-1)^((p+1)/2) (mod p), if p = prime(n) is odd.

Examples

			The quadratic residues of prime(4) = 7 are 1, 2, and 4, so a(4) = 1*2*4 = 8.
		

References

  • Carl-Erik Froeberg, On sums and products of quadratic residues, BIT, Nord. Tidskr. Inf.-behandl. 11 (1971) 389-398.

Crossrefs

Cf. A076409 Sum of the quadratic residues of prime(n), A177861 Product of the quadratic nonresidues of prime(n), A163366 Product of the quadratic residues of prime(n) modulo prime(n).

Programs

  • Mathematica
    Table[ Apply[Times, Flatten[Position[ Table[JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]], {n, 1, 16}]

Formula

a(n) = (p-1)!/A177861(n), where p = prime(n).

A232505 Sum of odd quadratic residues of prime(n).

Original entry on oeis.org

1, 1, 1, 1, 18, 13, 38, 50, 26, 83, 66, 137, 224, 242, 147, 303, 509, 395, 578, 364, 714, 563, 965, 1046, 1254, 1155, 1043, 1565, 1323, 1676, 1667, 2440, 2456, 2589, 2563, 2284, 2827, 3362, 2526, 3503, 4408, 3765, 3271, 4902, 4557, 4005, 5829, 5380, 6952, 6093, 7046, 5288, 7626, 8691, 8552, 6871, 8563, 7622, 9007, 10250, 10365, 10233
Offset: 1

Views

Author

Jon Perry, Nov 25 2013

Keywords

Comments

Seems to have no modular form.

Examples

			a(1), a(2), a(3) and a(4) are all 1, as for the corresponding primes 2, 3, 5 and 7 the quadratic residue sets are {1}, {1}, {1,4} and {1,2,4}, in which all cases, only 1 is an odd residue.
For a(5), which is computed for the 5th prime, 11, we have a set of its quadratic residues (those less than 11) as {1,3,4,5,9}, of which when we sum only the odd residues, 1+3+5+9, we get a(5) = 18.
		

Crossrefs

Programs

  • Mathematica
    Table[Function[p, Total@ Select[Range[1, p, 2], JacobiSymbol[#, p] == 1 &]]@ Prime@ n, {n, 62}] (* Michael De Vlieger, May 14 2017 *)
  • PARI
    A232597(n) = {s=0; for(k=1, n, s=s+((k%2)*((1+kronecker(k, n))\2)*k)); return(s); }
    forprime (i=1, 300, print1(A232597(i), ", ")) \\ Antti Karttunen, Nov 26 2013
    
  • Python
    from sympy.ntheory.residue_ntheory import quadratic_residues as q
    from sympy import prime
    def a(n): return sum(i for i in q(prime(n)) if i%2)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017

Formula

a(n) = A232597(A000040(n)). - Antti Karttunen, Nov 26 2013

Extensions

Missing 1 (as a(1) is value for the first prime, 2) inserted into beginning by Antti Karttunen, Nov 26 2013

A125614 (Sum of the squares of the quadratic residues of prime(n)) / prime(n).

Original entry on oeis.org

3, 12, 27, 48, 46, 48, 139, 106, 229, 286, 276, 239, 469, 477, 627, 698, 574, 914, 823, 1003, 1350, 1612, 1713, 1485, 1721, 2007, 2172, 2339, 2500, 3190, 2977, 3733, 3234, 4155, 4306, 3688, 5023, 4848, 5529, 4791, 6356, 6517, 5655, 7051, 7452, 7964, 8845
Offset: 4

Views

Author

Nick Hobson, Nov 30 2006

Keywords

Comments

Always an integer for primes > 5.

Examples

			The quadratic residues of 7=prime(4) are 1, 2 and 4. Hence a(4) = (1^2 + 2^2 + 4^2)/7 = 3.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 185.

Crossrefs

Programs

  • Mathematica
    Table[Total[ResourceFunction["QuadraticResidues"][Prime[n]]^2/Prime[n]], {n,4, 50}] (* James C. McMahon, Dec 19 2024 *)
  • PARI
    vector(47, m, p=prime(m+3); t=1; for(i=2, (p-1)/2, t+=((i^2)%p)^2); t/p)

Formula

a(n) = A125613(n)/prime(n).

A380790 Length of the n-th Golomb ruler constructed by the Paul Erdős and Pál Turán formula.

Original entry on oeis.org

20, 110, 308, 1254, 2106, 4760, 6650, 11822, 23954, 29202, 49950, 68060, 78518, 102460, 147446, 203432, 225090, 298418, 354858, 386316, 489484, 568052, 700964, 907920, 1025150, 1086856, 1218944, 1289034, 1436456, 2039620, 2238790, 2561900, 2675472, 3296774, 3430418
Offset: 2

Views

Author

Darío Clavijo, Feb 03 2025

Keywords

Comments

In October of 1941 Paul Erdős and Pál Turán found that a Golomb ruler could be constructed for every odd prime p.
Such a ruler has the property that the mark or notches are defined by: notch(k) = 2pk + (k^2 mod p) for k in {0..p-1}, with p=A000040(n).
Empirical observation: a(n) satisfies p^3-p^2 <= a(n)/p^3 <= 0.9999.
Except for n=2, a(n) is divisible by p.
Also partial sums of A217793.

Examples

			 n | p  | Golomb ruler notches                             | a(n)
---+----+--------------------------------------------------+-------
 2 | 3  | 0, 7,  13                                        | 20
 3 | 5  | 0, 11, 24, 34, 41                                | 110
 4 | 7  | 0, 15, 32, 44, 58, 74,  85                       | 308
 5 | 11 | 0, 23, 48, 75, 93, 113, 135, 159, 185, 202, 221  | 1254
		

Crossrefs

Programs

  • PARI
    a(n)= if(n==2, return(20));  my(p=prime(n)); if(bitand(p, 3)==1, return((p*(p-1)*(2*p+1))/2)); if(bitand(p, 3)==3, return((p*(p-1)*(2*p+1))/2 - p * qfbclassno(-p)));
  • Python
    from sympy import prime
    from math import isqrt
    def a(n):
      p = prime(n)
      if p & 3 == 1: return (p*(p-1)*(2*p+1))//2
      m = isqrt(p-1)
      return (p-1) * p**2 + (m*(m+1)*(2*m+1))//6 + sum(pow(k,2,p) for k in range(m+1,p))
    print([a(n) for n in range(2, 37) ])
    

Formula

a(n) = Sum_{k=0..p-1} (2*k*p + k^2 mod p), where p is the n-th prime.
a(n) = (p-1)*p^2 + 1 + Sum_{k=2..p-1} (k^2 mod p), where p is the n-th prime.
a(n) = (p-1)*p^2 + A000330(m) + Sum_{k=m+1..p-1} (k^2 mod p), where m = floor(sqrt(p-1)) and p is the n-th prime.
a(n) = (p-1)*p^2 + p*(p-1)*(p+1)/12 - 2*p*(Sum_{k=1..(p-1)/2} floor(k^2/p)), where p is the n-th prime.
a(n) = A100104(A000040(n)) + A048153(A000040(n)) - 1.
a(n) = A100104(A000040(n)) + A076409(n).
a(n) = A160378(A000040(n)), iif A000040(n) = 1 (mod 4).
a(n) = A160378(A000040(n)) - A000040(n)*A355879(n), iif A000040(n) = 3 (mod 4).
a(n) < A000040(n)^3.
a(n) > A000040(n)^3 - A000040(n)^2.
a(n) = 0 mod A000040(n) for n >= 3.
a(n) = Sum_{k=0..A000040(n)-1} A217793(n - 1, k).
a(n) = A135177(n) + A127921(n) - 2*p*(Sum_{k=1..(p-1)/2} floor(k^2/p)), where p = A000040(n).
Previous Showing 11-18 of 18 results.