cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A179625 Legal generalized repunit prime numbers.

Original entry on oeis.org

5, 7, 13, 31, 43, 73, 157, 211, 241, 1093, 2801, 19531, 22621, 30941, 55987, 88741, 245411, 292561, 346201, 797161, 5229043, 8108731, 12207031, 25646167, 305175781, 321272407, 917087137, 16148168401, 2141993519227, 10778947368421, 17513875027111, 610851724137931, 50544702849929377
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jan 09 2011

Keywords

Comments

In Chris Caldwell's sense, a legal generalized repunit prime is a prime number of the form (b^p-1)/(b-1) such that 3 <= b <= 5*p, b != 10, and p prime.

Crossrefs

Cf. A076481, A086122, A165210, A102170 (repunit primes in bases 3, 5, 6, and 7)
This sequence except for the term 5 is subsequence of A085104.

Programs

  • Mathematica
    lim=10^17; n=1; Sort[Reap[While[p=Prime[n]; b=3; While[num=Cyclotomic[p,b]; b<=5p && num<=lim, If[b!=10 && PrimeQ[num], Sow[num]]; b++]; b>3, n++]][[2,1]]]
  • PARI
    upTo(lim)=my(v=List(),t);forprime(p=2,log(2*lim+1)\log(3),for(b=3,5*p,if(b==10,next);t=(b^p-1)/(b-1);if(t>lim,break);if(isprime(t),listput(v,t))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Aug 21 2011

A255510 Numbers n of the form 3^k such that sigma(n) is a prime p.

Original entry on oeis.org

9, 729, 531441, 2503155504993241601315571986085849, 4638397686588101979328150167890591454318967698009
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2015

Keywords

Comments

Powers of 3 from A023194 (numbers n such that sigma(n) is a prime).

Crossrefs

Cf. A000203 (sigma), A023194 (sigma(n) is prime).
Cf. A003462 (sigma(3^n)), A028491 (sigma(3^n) is prime) , A076481.

Programs

  • Magma
    [(3^n): n in [1..1000] | IsPrime((SumOfDivisors(3^n)))]
  • Mathematica
    Select[3^Range[0,110],PrimeQ[DivisorSigma[1,#]]&] (* Harvey P. Dale, Mar 29 2015 *)

Formula

a(n) = 3^(A028491(n) - 1).
sigma(a(n)) = A076481(n).

A308442 Primes of the form (p^k+1)/2 where p is prime and k > 1.

Original entry on oeis.org

5, 13, 41, 61, 181, 313, 421, 1201, 1741, 1861, 2521, 3121, 5101, 7321, 8581, 9661, 14281, 16381, 19801, 36721, 41761, 60901, 71821, 83641, 100801, 106261, 135721, 139921, 161881, 163021, 199081, 205441, 218461, 273061, 282001, 337021, 353641, 388081, 431521, 491041, 531481, 539761, 552301, 571381
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, May 27 2019

Keywords

Comments

The only primes of the form (p^k-1)/2 are A076481, since (p^k-1)/2 is divisible by (p-1)/2.
k must be a power of 2, since if k has an odd divisor d>1, (p^k+1)/2 is divisible by (p^(k/d)+1)/2.

Examples

			a(3) = 41 is in the sequence because 41 = (3^4 + 1)/2.
		

Crossrefs

Cf. A076481.
Contains A067756.

Programs

  • Maple
    N:= 10^6: # to get terms <= N
    p:= 2:
    Res:= NULL:
    do
      p:= nextprime(p);
      if p^2 >= 2*N then break fi;
      pk:= p;
      do
        pk:= pk^2;
        if pk >= 2*N then break fi;
        v:= (pk+1)/2;
        if isprime(v) then Res:= Res, v;
        fi;
      od
    od:
    sort([Res]); # Robert Israel, May 27 2019

A173759 Prime numbers p such that 1/p is in the Cantor set.

Original entry on oeis.org

3, 13, 757, 1093, 797161
Offset: 1

Views

Author

T. D. Noe, Feb 23 2010

Keywords

Comments

These are the prime numbers in A121153. Some of these primes are in A076481, the base-3 repunit primes, which have the form (3^n-1)/2. However, 757 has base-3 representation 1001001 and a base-27 representation 111. Are more exceptions?
Contains A076481 as a subsequence, implying that a(6) <= A076481(4) = 3754733257489862401973357979128773. - Max Alekseyev, Aug 17 2013

Examples

			3 is here because 1/3 can be written 0.02222222...
		

A385326 The number of positive k <= 2*n + 1 such that 2*n + 1 divides (2^k + 2*n + 1)^2 - 1.

Original entry on oeis.org

1, 3, 2, 2, 3, 2, 2, 7, 4, 2, 7, 2, 2, 3, 2, 6, 6, 5, 2, 6, 4, 6, 7, 2, 2, 12, 2, 5, 6, 2, 2, 21, 10, 2, 6, 2, 8, 7, 5, 2, 3, 2, 21, 6, 8, 15, 18, 5, 4, 6, 2, 2, 17, 2, 6, 6, 8, 5, 19, 9, 2, 12, 2, 18, 18, 2, 14, 7, 4, 2, 6, 4, 10, 7, 2, 10, 12, 15, 6, 6, 4, 2, 16, 2, 2, 19, 2, 5, 6, 2, 2, 6, 10, 9, 21, 2, 4, 32, 2, 2, 6
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jun 25 2025

Keywords

Examples

			1 is the term because 2*0 + 1 = 1 is divisor of (2^1 + 2*0 + 1)^2 - 1 = 3^2 - 1 = 8.
		

Crossrefs

Cf. A003462 (numbers m > 0 such that a(m) = 3), A005384 (primes p such that a(p) = 2), A005408 (odd numbers), A076481 (primes q such that a(q) = 3), A081858 (numbers k numbers k >= 0 such that 2k + 1 divides 2^k - 1), A102781 (numbers k such that 2k + 1 divides (2^k + 2*k + 1)^2 - 1), A224486 (numbers k such that 2k + 1 divides 2^k + 1).

Programs

  • Magma
    [#[k: k in [1..2*n+1] | ((2^k+2*n+1)^2 - 1) mod (2*n + 1) eq 0]: n in [0..100]];
    
  • Mathematica
    a[n_]:=Length[Select[Range[2n+1],Divisible[(2^#+2n+1)^2-1,2n+1] &]]; Array[a,101,0] (* Stefano Spezia, Jun 25 2025 *)
  • PARI
    a(n) = sum(k=1, 2*n+1, !Mod((2^k + 2*n + 1)^2 - 1, 2*n + 1)); \\ Michel Marcus, Jun 25 2025
Previous Showing 21-25 of 25 results.