cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A139595 A139277(n) followed by A139273(n+1).

Original entry on oeis.org

0, 5, 13, 26, 42, 63, 87, 116, 148, 185, 225, 270, 318, 371, 427, 488, 552, 621, 693, 770, 850, 935, 1023, 1116, 1212, 1313, 1417, 1526, 1638, 1755, 1875, 2000, 2128, 2261, 2397, 2538, 2682, 2831, 2983, 3140, 3300, 3465, 3633, 3806
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5,... and the same line from 0, in the direction 0, 13,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 5
13, 26
42, 63
87, 116
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,5,13,26},50] (* Harvey P. Dale, Jul 31 2021 *)

Formula

Array read by rows: row n gives 8*n^2 + 5n, 8*(n+1)^2 - 3(n+1).
G.f.: -x*(5+3*x) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Feb 13 2011

A139597 A139278(n) followed by A139274(n+1).

Original entry on oeis.org

0, 7, 15, 30, 46, 69, 93, 124, 156, 195, 235, 282, 330, 385, 441, 504, 568, 639, 711, 790, 870, 957, 1045, 1140, 1236, 1339, 1443, 1554, 1666, 1785, 1905, 2032, 2160, 2295, 2431, 2574, 2718, 2869, 3021, 3180, 3340, 3507, 3675, 3850
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7,... and the line from 15, in the direction 15, 46,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 7
15, 30
46, 69
93, 124
		

Crossrefs

Formula

Array read by rows: row n gives 8*n^2 + 7n, 8*(n+1)^2 - (n+1).
a(n) = (3-3*(-1)^n+14*n+8*n^2)/4. a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). G.f.: x*(7+x)/((1-x)^3*(1+x)). [Colin Barker, Jul 22 2012]

A244082 a(n) = 32*n^2.

Original entry on oeis.org

0, 32, 128, 288, 512, 800, 1152, 1568, 2048, 2592, 3200, 3872, 4608, 5408, 6272, 7200, 8192, 9248, 10368, 11552, 12800, 14112, 15488, 16928, 18432, 20000, 21632, 23328, 25088, 26912, 28800, 30752, 32768, 34848, 36992, 39200, 41472, 43808, 46208, 48672, 51200
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 19 2014

Keywords

Comments

Geometric connections of a(n) to the area and perimeter of a square.
Area:
. half the area of a square with side 8n (cf. A008590);
. area of a square with diagonal 8n (cf. A008590);
. twice the area of a square with side 4n (cf. A008586);
. four times the area of a square with diagonal 4n (cf. A008586);
. eight times the area of a square with side 2n (cf. A005843);
. sixteen times the area of a square with diagonal 2n (cf. A005843);
. thirty two times the area of a square with side n (cf. A001477);
. sixty four times the area of a square with diagonal n (cf. A001477).
Perimeter:
. perimeter of a square with side 8n^2 (cf. A139098);
. twice the perimeter of a square with side 4n^2 (cf. A016742);
. four times the perimeter of a square with side 2n^2 (cf. A001105);
. eight times the perimeter of a square with side n^2 (cf. A000290).
Sequence found by reading the line from 0, in the direction 0, 32, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - Omar E. Pol, May 10 2018

Crossrefs

Programs

  • Magma
    [32*n^2 : n in [0..50]];
    
  • Maple
    A244082:=n->32*n^2; seq(A244082(n), n=0..50);
  • Mathematica
    32 Range[0, 50]^2 (* or *)
    Table[32 n^2, {n, 0, 50}] (* or *)
    CoefficientList[Series[32 x (1 + x)/(1 - x)^3, {x, 0, 30}], x]
  • PARI
    a(n)=32*n^2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: 32*x*(1+x)/(1-x)^3.
a(n) = 2 * A016802(n).
a(n) = 4 * A139098(n).
a(n) = 8 * A016742(n).
a(n) = 16 * A001105(n).
a(n) = 32 * A000290(n).
a(n) = A010021(n) - 2 for n > 0. - Bruno Berselli, Jun 24 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Nov 19 2021
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 32*x*(1 + x)*exp(x).
a(n) = n*A174312(n) = A139098(2*n). (End)

A195241 Expansion of (1-x+19*x^3-3*x^4)/(1-x)^3.

Original entry on oeis.org

1, 2, 3, 23, 59, 111, 179, 263, 363, 479, 611, 759, 923, 1103, 1299, 1511, 1739, 1983, 2243, 2519, 2811, 3119, 3443, 3783, 4139, 4511, 4899, 5303, 5723, 6159, 6611, 7079, 7563, 8063, 8579, 9111, 9659, 10223, 10803, 11399, 12011, 12639, 13283, 13943
Offset: 0

Views

Author

Bruno Berselli, Sep 13 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

Sequence found by reading the line 1, 2, 3, 23,.. in the square spiral whose vertices are the triangular numbers (A000217) - see Pol's comments in other sequences visible in this numerical spiral.
This is a subsequence of A110326 (without signs) and A047838 (apart from the second term, 2).

Crossrefs

Programs

  • Magma
    m:=44; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+19*x^3-3*x^4)/(1-x)^3));
    
  • Mathematica
    CoefficientList[Series[(1 - x + 19 x^3 - 3 x^4)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{3,-3,1},{1,2,3,23,59},50] (* Harvey P. Dale, Dec 04 2022 *)
  • Maxima
    makelist(coeff(taylor((1-x+19*x^3-3*x^4)/(1-x)^3, x, 0, n), x, n), n, 0, 43);
  • PARI
    Vec((1-x+19*x^3-3*x^4)/(1-x)^3+O(x^44))
    

Formula

G.f.: (1-x+19*x^3-3*x^4)/(1-x)^3.
a(n) = 8*n^2-20*n+11 for n>1; a(0)=1, a(1)=2.

A275496 a(n) = n^2*(2*n^2 + (-1)^n).

Original entry on oeis.org

0, 1, 36, 153, 528, 1225, 2628, 4753, 8256, 13041, 20100, 29161, 41616, 56953, 77028, 101025, 131328, 166753, 210276, 260281, 320400, 388521, 468996, 559153, 664128, 780625, 914628, 1062153, 1230096, 1413721, 1620900, 1846081, 2098176, 2370753, 2673828
Offset: 0

Views

Author

Daniel Poveda Parrilla, Jul 30 2016

Keywords

Comments

All terms of this sequence are triangular numbers. Graphically, for each term of the sequence, one corner of the square of squares (4th power) will be part of the corresponding triangle's hypotenuse if the term is an odd number. Otherwise, it will not be part of it.
a(A000129(n)) is a square triangular number.
a(2^((A000043(n) - 1)/2)) - 2^A000043(n) is a perfect number.

Examples

			a(5) = 5^4 + Sum_{k=0..(5^2 - (5 mod 2))} 2k = 625 + Sum_{k=0..(25 - 1)} 2k = 625 + 600 = 1225.
a(12) = 12^4 + Sum_{k=0..(12^2 - (12 mod 2))} 2k = 20736 + Sum_{k=0..(144 - 0)} 2k = 20736 + 20880 = 41616.
		

Crossrefs

Programs

  • Mathematica
    Table[n^2 ((-1)^n + 2 n^2), {n, 0, 34}] (* or *)
    CoefficientList[Series[x (1 + 34 x + 79 x^2 + 156 x^3 + 79 x^4 + 34 x^5 +
    x^6)/((1 - x)^5 (1 + x)^3), {x, 0, 34}], x] (* Michael De Vlieger, Aug 01 2016 *)
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,1,36,153,528,1225,2628,4753},40] (* Harvey P. Dale, Sep 10 2016 *)
  • PARI
    a(n)=n=n^2; if(n%2,2*n-1,2*n+1)*n \\ Charles R Greathouse IV, Jul 30 2016
    
  • PARI
    concat(0, Vec(x*(1+34*x+79*x^2+156*x^3+79*x^4+34*x^5+x^6)/((1-x)^5*(1+x)^3) + O(x^100))) \\ Colin Barker, Aug 01 2016

Formula

a(n) = n^4 + Sum_{k=0..(n^2 - (n mod 2))} 2k.
a(n) = A275543(n)*(n^2).
From Colin Barker, Aug 01 2016 and Aug 04 2016: (Start)
a(n) = n^2*(2*n^2 + (-1)^n).
a(n) = 2*n^4 + n^2 for n even.
a(n) = 2*n^4 - n^2 for n odd.
G.f.: x*(1 +34*x +79*x^2 +156*x^3 +79*x^4 +34*x^5 +x^6) / ((1-x)^5*(1+x)^3).
(End)
a(n) = n^2*A000217(2n-1) + 2n*A000217(n-(n mod 2)) for n > 0.
E.g.f.: x*(2*(1 + 7*x + 6*x^2 + x^3)*exp(x) - exp(-x)). - G. C. Greubel, Aug 05 2016
a(n) = A000217(A077221(n)).
a(n) = (A001844(A077221(n)) - 1)/4.
Sum_{n>=1} 1/a(n) = 1 - Pi^2/12 + (tan(c) - coth(c))*c, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022

Extensions

New name from Colin Barker, Aug 04 2016

A275543 A081585 and A069129 interleaved.

Original entry on oeis.org

1, 1, 9, 17, 33, 49, 73, 97, 129, 161, 201, 241, 289, 337, 393, 449, 513, 577, 649, 721, 801, 881, 969, 1057, 1153, 1249, 1353, 1457, 1569, 1681, 1801, 1921, 2049, 2177, 2313, 2449, 2593, 2737, 2889, 3041, 3201, 3361, 3529, 3697, 3873, 4049, 4233, 4417, 4609
Offset: 0

Views

Author

Daniel Poveda Parrilla, Aug 01 2016

Keywords

Comments

a(A000129(n)) is a square.
(n^2)*a(n) = A275496(n) which is a triangular number.
(A000129(n)^2)*a(A000129(n)) = A275496(A000129(n)) = A001110(n) which is a square triangular number.
a(2n+1)/a(2n) is convergent to 1.

Examples

			a(1) = A275496(1) = 1.
a(5) = A275496(5)/25 = 1225/25 = 49.
a(7) = A275496(7)/49 = 4753/49 = 97.
a(12) = A275496(12)/144 = 41616/144 = 289.
		

Crossrefs

Cf. A081585(n) = a(2n), A069129(n) = a(2n + 1).

Programs

Formula

a(0) = 1; a(n) = A275496(n)/(n^2) for n > 0.
From Colin Barker, Aug 01 2016: (Start)
a(n) = (2*n^2 + (-1)^n).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3.
G.f.: (1 -x +7*x^2 +x^3) / ((1 - x)^3*(1 + x)).
(End)
From Daniel Poveda Parrilla, Aug 18 2016: (Start)
a(2n) = A077221(2n) + 1.
a(2n + 1) = A077221(2n + 1). (End)
Sum_{n>=0} 1/a(n) = (1 + (tan(c) + coth(c))*c)/2, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022

A077222 a(1) = 1 and then alternately the smallest even and odd numbers not occurring earlier such that the sum of two successive terms is a square.

Original entry on oeis.org

1, 8, 17, 32, 49, 72, 9, 16, 33, 48, 73, 96, 25, 24, 57, 64, 105, 120, 169, 56, 65, 104, 121, 168, 193, 248, 41, 40, 81, 88, 137, 152, 209, 80, 89, 136, 153, 208, 233, 128, 97, 192, 249, 112, 113, 176, 185, 256, 273, 352, 177, 184, 257, 272, 353, 376, 465, 160
Offset: 0

Views

Author

Amarnath Murthy, Nov 03 2002

Keywords

Crossrefs

Cf. A077221.

Extensions

Corrected and extended by John W. Layman, Jan 12 2005

A131925 2*A002024 - A000012(signed).

Original entry on oeis.org

1, 5, 3, 5, 7, 5, 9, 7, 9, 7, 9, 11, 9, 11, 9, 13, 11, 13, 11, 13, 11, 13, 15, 13, 15, 13, 15, 13, 17, 15, 17, 15, 17, 15, 17, 15, 17, 19, 17, 19, 17, 19, 17, 19, 17
Offset: 0

Views

Author

Gary W. Adamson, Jul 29 2007

Keywords

Comments

Row sums = A077221: (1, 8, 17, 32, 49, 72, 97, ...).

Examples

			First few rows of the triangle:
   1;
   5,  3;
   5,  7,  5;
   9,  7,  9,  7;
   9, 11,  9, 11,  9;
  13, 11, 13, 11, 13, 11;
  13, 15, 13, 15, 13, 15, 13;
  ....
		

Crossrefs

Formula

2*A002024 - A000012 (signed + - + -, ... by columns).
A002024 = (1; 2,2; 3,3,3; ...); A000012(signed) = (1; -1,1; 1,-1,1; ...).

A270693 Alternating sum of centered 25-gonal numbers.

Original entry on oeis.org

1, -25, 51, -100, 151, -225, 301, -400, 501, -625, 751, -900, 1051, -1225, 1401, -1600, 1801, -2025, 2251, -2500, 2751, -3025, 3301, -3600, 3901, -4225, 4551, -4900, 5251, -5625, 6001, -6400, 6801, -7225, 7651, -8100, 8551, -9025, 9501, -10000, 10501
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2016

Keywords

Comments

The absolute value alternating sum of centered k-gonal numbers gives concentric k-gonal numbers.
More generally, the ordinary generating function for the alternating sum of centered k-gonal numbers is (1 - (k - 2)*x + x^2)/((1 - x)*(1 + x)^3).

Crossrefs

Programs

  • Magma
    [((-1)^n*(50*n^2 + 100*n + 29) - 21)/8 : n in [0..40]]; // Wesley Ivan Hurt, Mar 21 2016
  • Maple
    A270693:=n->((-1)^n*(50*n^2 + 100*n + 29) - 21)/8: seq(A270693(n), n=0..100); # Wesley Ivan Hurt, Sep 18 2017
  • Mathematica
    LinearRecurrence[{-2, 0, 2, 1}, {1, -25, 51, -100}, 41]
    Table[((-1)^n (50 n^2 + 100 n + 29) - 21)/8, {n, 0, 40}]
  • PARI
    x='x+O('x^100); Vec((1-23*x+x^2)/((1-x)*(1+x)^3)) \\ Altug Alkan, Mar 21 2016
    

Formula

G.f.: (1 - 23*x + x^2)/((1 - x)*(1 + x)^3).
E.g.f.: (1/8)*(-21*exp(x) + (29 - 150*x + 50*x^2)*exp(-x)).
a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4).
a(n) = ((-1)^n*(50*n^2 + 100*n + 29) - 21)/8.

A237587 Triangle read by rows in which row n lists the first n odd squares in decreasing order.

Original entry on oeis.org

1, 9, 1, 25, 9, 1, 49, 25, 9, 1, 81, 49, 25, 9, 1, 121, 81, 49, 25, 9, 1, 169, 121, 81, 49, 25, 9, 1, 225, 169, 121, 81, 49, 25, 9, 1, 289, 225, 169, 121, 81, 49, 25, 9, 1, 361, 289, 225, 169, 121, 81, 49, 25, 9, 1, 441, 361, 289, 225, 169, 121, 81, 49, 25, 9, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 16 2014

Keywords

Comments

The sum of row n gives A000447(n).
The alternatig sum of row n gives A077221(n).

Examples

			Triangle begins:
1;
9,     1;
25,    9,   1;
49,   25,   9,   1;
81,   49,  25,   9,   1;
121,  81,  49,  25,   9,   1;
169, 121,  81,  49,  25,   9,   1;
225, 169, 121,  81,  49,  25,   9,   1;
289, 225, 169, 121,  81,  49,  25,   9,   1;
361, 289, 225, 169, 121,  81,  49,  25,   9,   1;
...
		

Crossrefs

Formula

T(n,k) = (2*(n-k+1)-1)^2, n >=1, 1<=k<=n.
Previous Showing 21-30 of 30 results.