Original entry on oeis.org
0, 5, 13, 26, 42, 63, 87, 116, 148, 185, 225, 270, 318, 371, 427, 488, 552, 621, 693, 770, 850, 935, 1023, 1116, 1212, 1313, 1417, 1526, 1638, 1755, 1875, 2000, 2128, 2261, 2397, 2538, 2682, 2831, 2983, 3140, 3300, 3465, 3633, 3806
Offset: 0
Array begins:
0, 5
13, 26
42, 63
87, 116
Cf.
A000217,
A046092,
A139273,
A139277,
A077221,
A139591,
A139592,
A139593,
A139596,
A139597,
A139598.
-
LinearRecurrence[{2,0,-2,1},{0,5,13,26},50] (* Harvey P. Dale, Jul 31 2021 *)
Original entry on oeis.org
0, 7, 15, 30, 46, 69, 93, 124, 156, 195, 235, 282, 330, 385, 441, 504, 568, 639, 711, 790, 870, 957, 1045, 1140, 1236, 1339, 1443, 1554, 1666, 1785, 1905, 2032, 2160, 2295, 2431, 2574, 2718, 2869, 3021, 3180, 3340, 3507, 3675, 3850
Offset: 0
Array begins:
0, 7
15, 30
46, 69
93, 124
Cf.
A000217,
A046092,
A139274,
A139278,
A077221,
A139591,
A139592,
A139593,
A139595,
A139596,
A139598.
A244082
a(n) = 32*n^2.
Original entry on oeis.org
0, 32, 128, 288, 512, 800, 1152, 1568, 2048, 2592, 3200, 3872, 4608, 5408, 6272, 7200, 8192, 9248, 10368, 11552, 12800, 14112, 15488, 16928, 18432, 20000, 21632, 23328, 25088, 26912, 28800, 30752, 32768, 34848, 36992, 39200, 41472, 43808, 46208, 48672, 51200
Offset: 0
-
[32*n^2 : n in [0..50]];
-
A244082:=n->32*n^2; seq(A244082(n), n=0..50);
-
32 Range[0, 50]^2 (* or *)
Table[32 n^2, {n, 0, 50}] (* or *)
CoefficientList[Series[32 x (1 + x)/(1 - x)^3, {x, 0, 30}], x]
-
a(n)=32*n^2 \\ Charles R Greathouse IV, Jun 17 2017
A195241
Expansion of (1-x+19*x^3-3*x^4)/(1-x)^3.
Original entry on oeis.org
1, 2, 3, 23, 59, 111, 179, 263, 363, 479, 611, 759, 923, 1103, 1299, 1511, 1739, 1983, 2243, 2519, 2811, 3119, 3443, 3783, 4139, 4511, 4899, 5303, 5723, 6159, 6611, 7079, 7563, 8063, 8579, 9111, 9659, 10223, 10803, 11399, 12011, 12639, 13283, 13943
Offset: 0
Cf.
A033585,
A069129,
A077221,
A102083,
A139098,
A139271-
A139277,
A139592,
A139593,
A188135,
A194268,
A194431,
A195605 [incomplete list].
-
m:=44; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+19*x^3-3*x^4)/(1-x)^3));
-
CoefficientList[Series[(1 - x + 19 x^3 - 3 x^4)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{3,-3,1},{1,2,3,23,59},50] (* Harvey P. Dale, Dec 04 2022 *)
-
makelist(coeff(taylor((1-x+19*x^3-3*x^4)/(1-x)^3, x, 0, n), x, n), n, 0, 43);
-
Vec((1-x+19*x^3-3*x^4)/(1-x)^3+O(x^44))
A275496
a(n) = n^2*(2*n^2 + (-1)^n).
Original entry on oeis.org
0, 1, 36, 153, 528, 1225, 2628, 4753, 8256, 13041, 20100, 29161, 41616, 56953, 77028, 101025, 131328, 166753, 210276, 260281, 320400, 388521, 468996, 559153, 664128, 780625, 914628, 1062153, 1230096, 1413721, 1620900, 1846081, 2098176, 2370753, 2673828
Offset: 0
a(5) = 5^4 + Sum_{k=0..(5^2 - (5 mod 2))} 2k = 625 + Sum_{k=0..(25 - 1)} 2k = 625 + 600 = 1225.
a(12) = 12^4 + Sum_{k=0..(12^2 - (12 mod 2))} 2k = 20736 + Sum_{k=0..(144 - 0)} 2k = 20736 + 20880 = 41616.
- Colin Barker and Daniel Poveda Parrilla, Table of n, a(n) for n = 0..46340 [n = 1 through 1000 by Colin Barker, Aug 02 2016; and n=1001 to 46340 by Daniel Poveda Parrilla, Aug 04 2016]
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
-
Table[n^2 ((-1)^n + 2 n^2), {n, 0, 34}] (* or *)
CoefficientList[Series[x (1 + 34 x + 79 x^2 + 156 x^3 + 79 x^4 + 34 x^5 +
x^6)/((1 - x)^5 (1 + x)^3), {x, 0, 34}], x] (* Michael De Vlieger, Aug 01 2016 *)
LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,1,36,153,528,1225,2628,4753},40] (* Harvey P. Dale, Sep 10 2016 *)
-
a(n)=n=n^2; if(n%2,2*n-1,2*n+1)*n \\ Charles R Greathouse IV, Jul 30 2016
-
concat(0, Vec(x*(1+34*x+79*x^2+156*x^3+79*x^4+34*x^5+x^6)/((1-x)^5*(1+x)^3) + O(x^100))) \\ Colin Barker, Aug 01 2016
Original entry on oeis.org
1, 1, 9, 17, 33, 49, 73, 97, 129, 161, 201, 241, 289, 337, 393, 449, 513, 577, 649, 721, 801, 881, 969, 1057, 1153, 1249, 1353, 1457, 1569, 1681, 1801, 1921, 2049, 2177, 2313, 2449, 2593, 2737, 2889, 3041, 3201, 3361, 3529, 3697, 3873, 4049, 4233, 4417, 4609
Offset: 0
a(1) = A275496(1) = 1.
a(5) = A275496(5)/25 = 1225/25 = 49.
a(7) = A275496(7)/49 = 4753/49 = 97.
a(12) = A275496(12)/144 = 41616/144 = 289.
-
CoefficientList[Series[(1 - x + 7 x^2 + x^3)/((1 - x)^3 (1 + x)), {x, 0, 48}], x] (* or as defined *)
Riffle[LinearRecurrence[{3, -3, 1}, {1, 9, 33}, #], FoldList[#1 + #2 &, 1, 16 Range@ #]] &@ 25 (* Michael De Vlieger, Aug 01 2016, after Vincenzo Librandi at A081585 and Robert G. Wilson v at A069129 *)
-
a(n)=(-1)^n + 2*n^2 \\ Charles R Greathouse IV, Aug 03 2016
-
Vec((1-x+7*x^2+x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Aug 21 2016
A077222
a(1) = 1 and then alternately the smallest even and odd numbers not occurring earlier such that the sum of two successive terms is a square.
Original entry on oeis.org
1, 8, 17, 32, 49, 72, 9, 16, 33, 48, 73, 96, 25, 24, 57, 64, 105, 120, 169, 56, 65, 104, 121, 168, 193, 248, 41, 40, 81, 88, 137, 152, 209, 80, 89, 136, 153, 208, 233, 128, 97, 192, 249, 112, 113, 176, 185, 256, 273, 352, 177, 184, 257, 272, 353, 376, 465, 160
Offset: 0
Original entry on oeis.org
1, 5, 3, 5, 7, 5, 9, 7, 9, 7, 9, 11, 9, 11, 9, 13, 11, 13, 11, 13, 11, 13, 15, 13, 15, 13, 15, 13, 17, 15, 17, 15, 17, 15, 17, 15, 17, 19, 17, 19, 17, 19, 17, 19, 17
Offset: 0
First few rows of the triangle:
1;
5, 3;
5, 7, 5;
9, 7, 9, 7;
9, 11, 9, 11, 9;
13, 11, 13, 11, 13, 11;
13, 15, 13, 15, 13, 15, 13;
....
A270693
Alternating sum of centered 25-gonal numbers.
Original entry on oeis.org
1, -25, 51, -100, 151, -225, 301, -400, 501, -625, 751, -900, 1051, -1225, 1401, -1600, 1801, -2025, 2251, -2500, 2751, -3025, 3301, -3600, 3901, -4225, 4551, -4900, 5251, -5625, 6001, -6400, 6801, -7225, 7651, -8100, 8551, -9025, 9501, -10000, 10501
Offset: 0
Cf.
A262221 (centered 25-gonal numbers).
Cf.
A032527,
A032528,
A077043,
A077221,
A195041,
A195042,
A195045,
A195046,
A195047,
A195048,
A195049,
A195058,
A195142,
A195043,
A195143,
A195145,
A195146,
A195147,
A195148,
A195149,
A195158.
-
[((-1)^n*(50*n^2 + 100*n + 29) - 21)/8 : n in [0..40]]; // Wesley Ivan Hurt, Mar 21 2016
-
A270693:=n->((-1)^n*(50*n^2 + 100*n + 29) - 21)/8: seq(A270693(n), n=0..100); # Wesley Ivan Hurt, Sep 18 2017
-
LinearRecurrence[{-2, 0, 2, 1}, {1, -25, 51, -100}, 41]
Table[((-1)^n (50 n^2 + 100 n + 29) - 21)/8, {n, 0, 40}]
-
x='x+O('x^100); Vec((1-23*x+x^2)/((1-x)*(1+x)^3)) \\ Altug Alkan, Mar 21 2016
A237587
Triangle read by rows in which row n lists the first n odd squares in decreasing order.
Original entry on oeis.org
1, 9, 1, 25, 9, 1, 49, 25, 9, 1, 81, 49, 25, 9, 1, 121, 81, 49, 25, 9, 1, 169, 121, 81, 49, 25, 9, 1, 225, 169, 121, 81, 49, 25, 9, 1, 289, 225, 169, 121, 81, 49, 25, 9, 1, 361, 289, 225, 169, 121, 81, 49, 25, 9, 1, 441, 361, 289, 225, 169, 121, 81, 49, 25, 9, 1
Offset: 1
Triangle begins:
1;
9, 1;
25, 9, 1;
49, 25, 9, 1;
81, 49, 25, 9, 1;
121, 81, 49, 25, 9, 1;
169, 121, 81, 49, 25, 9, 1;
225, 169, 121, 81, 49, 25, 9, 1;
289, 225, 169, 121, 81, 49, 25, 9, 1;
361, 289, 225, 169, 121, 81, 49, 25, 9, 1;
...
Comments