A280761
Solutions y_n to the negative Pell equation y^2 = 72*x^2 - 8.
Original entry on oeis.org
8, 280, 9512, 323128, 10976840, 372889432, 12667263848, 430314081400, 14618011503752, 496582077046168, 16869172608065960, 573055286597196472, 19467010571696614088, 661305304151087682520, 22464913330565284591592, 763145747935068588431608
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..652
- S. Vidhyalakshmi, V. Krithika, K. Agalya, On The Negative Pell Equation y^2 = 72*x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016).
- Index entries for linear recurrences with constant coefficients, signature (34,-1).
-
I:=[8,280]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 18 2017
-
LinearRecurrence[{34, -1}, {8, 280}, 20] (* Vincenzo Librandi, Jan 18 2017 *)
-
a(n)=([0,1;-1,34]^n*[-8;8])[1,1] \\ Charles R Greathouse IV, Jan 17 2017
A278476
a(n) = floor((1 + sqrt(2))^3*a(n-1)) for n>0, a(0) = 1.
Original entry on oeis.org
1, 14, 196, 2757, 38793, 545858, 7680804, 108077113, 1520760385, 21398722502, 301102875412, 4236838978269, 59616848571177, 838872718974746, 11803834914217620, 166092561518021425, 2337099696166517569, 32885488307849267390, 462733936006056261028
Offset: 0
Cf. similar sequences with recurrence relation b(n) = floor((1 + sqrt(2))^k*b(n-1)) for n>0, b(0) = 1:
A024537 (k = 1),
A001653 (k = 2), this sequence (k = 3),
A077420 (k = 4),
A097733 (k = 6).
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2)/((1-x)*(1-14*x-x^2)))); // G. C. Greubel, Oct 10 2018
-
seq(coeff(series((1-x-x^2)/((1-x)*(1-14*x-x^2)),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 11 2018
-
RecurrenceTable[{a[0] == 1, a[n] == Floor[(1 + Sqrt[2])^3 a[n - 1]]}, a, {n, 18}]
LinearRecurrence[{15, -13, -1}, {1, 14, 196}, 19]
CoefficientList[Series[(1-x-x^2)/((1-x)*(1-14*x-x^2)), {x,0,50}], x] (* G. C. Greubel, Oct 10 2018 *)
-
Vec((1 - x - x^2)/((1 - x)*(1 - 14*x - x^2)) + O(x^50)) \\ G. C. Greubel, Nov 24 2016
A280181
Indices of centered 9-gonal numbers (A060544) that are also squares (A000290).
Original entry on oeis.org
1, 17, 561, 19041, 646817, 21972721, 746425681, 25356500417, 861374588481, 29261379507921, 994025528680817, 33767606595639841, 1147104598723073761, 38967788749988868017, 1323757712900898438801, 44968794449880558051201, 1527615253583038075302017
Offset: 1
17 is in the sequence because the 17th centered 9-gonal number is 1225, which is also the 35th square.
From _Jon E. Schoenfield_, Sep 06 2019: (Start)
The following table illustrates the relationship between the NSW numbers (A002315), the odd Pell numbers (A001653), and the terms of this sequence:
.
| A002315(n-1)^2 | 2*A001653(n)^2 |
n | = 3*a(n) - 2 | = 3*a(n) - 1 | 3*a(n)
--+------------------+-------------------+-------------------
1 | 1^2 = 1 | 1^2*2 = 2 | 1*3 = 3
2 | 7^2 = 49 | 5^2*2 = 50 | 17*3 = 51
3 | 41^2 = 1681 | 29^2*2 = 1682 | 561*3 = 1683
4 | 239^2 = 57121 | 169^2*2 = 57122 | 19041*3 = 57123
5 | 1393^2 = 1940449 | 985^2*2 = 1940450 | 646817*3 = 1940451
(End)
-
LinearRecurrence[{35, -35, 1}, {1, 17, 561}, 50] (* G. C. Greubel, Dec 28 2016 *)
-
Vec(x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)) + O(x^20))
A281234
Solutions y to the negative Pell equation y^2 = 72*x^2 - 288 with x,y >= 0.
Original entry on oeis.org
0, 48, 288, 1680, 9792, 57072, 332640, 1938768, 11299968, 65861040, 383866272, 2237336592, 13040153280, 76003583088, 442981345248, 2581884488400, 15048325585152, 87708069022512, 511200088549920, 2979492462277008, 17365754685112128, 101215035648395760
Offset: 1
48 is in the sequence because (x, y) = (6,48) is a solution to y^2 = 72*x^2 - 288.
- Colin Barker, Table of n, a(n) for n = 1..1000
- S. Vidhyalakshmi, V. Krithika, K. Agalya, On The Negative Pell Equation y^2 = 72*x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016).
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Comments