A105477
Triangle read by rows: T(n,k) is the number of compositions of n into k parts when there are two kinds of part 2.
Original entry on oeis.org
1, 2, 1, 1, 4, 1, 1, 6, 6, 1, 1, 6, 15, 8, 1, 1, 7, 23, 28, 10, 1, 1, 8, 30, 60, 45, 12, 1, 1, 9, 39, 98, 125, 66, 14, 1, 1, 10, 49, 144, 255, 226, 91, 16, 1, 1, 11, 60, 202, 437, 561, 371, 120, 18, 1, 1, 12, 72, 272, 685, 1128, 1092, 568, 153, 20, 1, 1, 13, 85, 355, 1015, 1995, 2555
Offset: 1
T(4,2)=6 because we have (1,3),(3,1),(2,2),(2,2'),(2',2) and (2',2').
Triangle begins:
1;
2, 1;
1, 4, 1;
1, 6, 6, 1;
1, 6, 15, 8, 1;
From _Philippe Deléham_, Jan 25 2012: (Start)
Triangle T(n,k) given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, ...) DELTA (1,0,0,0,0,...) begins:
1;
0, 1;
0, 2, 1;
0, 1, 4, 1;
0, 1, 6, 6, 1;
0, 1, 6, 15, 8, 1; ... (End)
-
G:=t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3): Gser:=simplify(series(G,z=0,15)): for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 13 do seq(coeff(P[n],t^k),k=1..n) od; # yields sequence in triangular form
A199853
Expansion of (1-3*x+x^3)/(1-2*x-x^2+x^3).
Original entry on oeis.org
1, -1, -1, -3, -6, -14, -31, -70, -157, -353, -793, -1782, -4004, -8997, -20216, -45425, -102069, -229347, -515338, -1157954, -2601899, -5846414, -13136773, -29518061, -66326481, -149034250, -334876920, -752461609, -1690765888, -3799116465, -8536537209
Offset: 0
-
RecurrenceTable[{a[1]==-1, a[2]== -1, a[3]== -3, a[n]== 2*a[n-1] + a[n-2] - a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 13 2015 *)
CoefficientList[Series[(1-3x+x^3)/(1-2x-x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[{2,1,-1},{1,-1,-1,-3},40] (* Harvey P. Dale, May 31 2021 *)
-
Vec((1-3*x+x^3)/(1-2*x-x^2+x^3) + O(x^40)) \\ Michel Marcus, Aug 13 2015
A052559
Expansion of e.g.f. (1-x)/(1 - 2*x - x^2 + x^3).
Original entry on oeis.org
1, 1, 6, 36, 336, 3720, 50400, 791280, 14232960, 287763840, 6466521600, 159826867200, 4309577395200, 125885452492800, 3960073877760000, 133473015067392000, 4798579092443136000, 183299247820136448000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)/(1-2*x-x^2+x^3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 06 2019
-
spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[(1-x)/(1-2x-x^2+x^3),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 14 2018 *)
-
my(x='x+O('x^30)); Vec(serlaplace( (1-x)/(1-2*x-x^2+x^3) )) \\ G. C. Greubel, May 06 2019
-
m = 30; T = taylor((1-x)/(1-2*x-x^2+x^3), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 06 2019
A123508
1-dimensional quasiperiodic heptagonal sequence.
Original entry on oeis.org
1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3
Offset: 0
1=>3; 3=>1,3,2; then the previous subset generates 3,1,3,2,2,3. The resulting subsets are (1), (1,3,2), (3,1,3,2,2,3)...which we combine to form a continuous sequence.
A052613
E.g.f. (1-2x)/(1-2x-x^2+x^3).
Original entry on oeis.org
1, 0, 2, 6, 72, 720, 10080, 156240, 2822400, 56972160, 1280966400, 31654022400, 853580851200, 24932991283200, 784343085926400, 26435945023488000, 950417730662400000, 36304660098330624000, 1468365202287599616000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Sequence(Prod(Z,Z,Sequence(Prod(Z,Sequence(Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[(1-2x)/(1-2x-x^2+x^3),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 08 2015 *)
A052640
E.g.f. x*(1-x)/(1-2*x-x^2+x^3).
Original entry on oeis.org
0, 1, 2, 18, 144, 1680, 22320, 352800, 6330240, 128096640, 2877638400, 71131737600, 1917922406400, 56024506137600, 1762396334899200, 59401108166400000, 2135568241078272000, 81575844571533312000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Prod(Z,Sequence(Prod(Z,Union(Z,Sequence(Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[-x*(-1+x)/(x^3-x^2-2*x+1),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 10 2023 *)
A052971
Expansion of (1-x)/(1-2*x-2*x^3+2*x^4).
Original entry on oeis.org
1, 1, 2, 6, 12, 26, 60, 132, 292, 652, 1448, 3216, 7152, 15896, 35328, 78528, 174544, 387952, 862304, 1916640, 4260096, 9468896, 21046464, 46779840, 103977280, 231109696, 513686144, 1141767168, 2537799168, 5640751232, 12537664512, 27867393024, 61940690176
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Sequence(Prod(Union(Prod(Union(Z,Z),Z),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
CoefficientList[Series[(1-x)/(1-2x-2x^3+2x^4),{x,0,30}],x] (* or *) LinearRecurrence[{2,0,2,-2},{1,1,2,6},32] (* Harvey P. Dale, Jul 23 2012 *)
A120771
Expansion of ( 1-x^3+x^4+x^5-x^8 ) / ( 1-2*x^3-x^6+x^9 ).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 3, 2, 1, 6, 5, 3, 14, 11, 6, 31, 25, 14, 70, 56, 31, 157, 126, 70, 353, 283, 157, 793, 636, 353, 1782, 1429, 793, 4004, 3211, 1782, 8997, 7215, 4004, 20216, 16212, 8997, 45425, 36428, 20216, 102069, 81853, 45425, 229347, 183922, 102069, 515338, 413269, 229347, 1157954, 928607, 515338
Offset: 0
-
CoefficientList[Series[(1-x^3+x^4+x^5-x^8)/(1-2*x^3-x^6+x^9),{x,0,60}],x] (* or *) LinearRecurrence[{0,0,2,0,0,1,0,0,-1},{1,0,0,1,1,1,3,2,1},60] (* Harvey P. Dale, Feb 19 2016 *)
A121302
Number of directed column-convex polyominoes having at least one 1-cell column.
Original entry on oeis.org
1, 1, 4, 10, 28, 75, 202, 540, 1440, 3828, 10153, 26875, 71021, 187421, 494013, 1300844, 3422509, 8998118, 23642479, 62088032, 162978242, 427648023, 1121766397, 2941697012, 7712415568, 20215976824, 52981414253, 138831400836
Offset: 1
a(3)=4 because, with the exception of the 3-cell column, all the other four directed column-convex polyominoes of area 3 have a 1-cell column.
- E. Barcucci, R. Pinzani and R. Sprugnoli, Directed column-convex polyominoes by recurrence relations, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-2,4,-1).
-
G:=z*(1-z)*(1-3*z+2*z^2)/(1-3*z+z^2)/(1-2*z-z^2+z^3): Gser:=series(G,z=0,35): seq(coeff(Gser,z,n),n=1..32);
-
Vec(z*(1-z)*(1-3*z+2*z^2)/((1-3*z+z^2)*(1-2*z-z^2+z^3)) + O(z^40)) \\ Michel Marcus, Feb 14 2016
A362379
Convolution triangle of A052547(n).
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 1, 4, 0, 1, 5, 2, 6, 0, 1, 5, 14, 3, 8, 0, 1, 14, 14, 27, 4, 10, 0, 1, 19, 49, 27, 44, 5, 12, 0, 1, 42, 68, 113, 44, 65, 6, 14, 0, 1, 66, 175, 159, 214, 65, 90, 7, 16, 0, 1, 131, 286, 465, 304, 360, 90, 119, 8, 18, 0, 1
Offset: 0
Triangle begins, for n>=0, 0<=k<=n :
1 ;
0, 1 ;
2, 0, 1 ;
1, 4, 0, 1 ;
5, 2, 6, 0, 1 ;
5, 14, 3, 8, 0, 1 ;
14, 14, 27, 4, 10, 0, 1 ;
19, 49, 27, 44, 5, 12, 0, 1 ;
42, 68, 113, 44, 65, 6, 14, 0, 1 ;
...
Comments