cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A105477 Triangle read by rows: T(n,k) is the number of compositions of n into k parts when there are two kinds of part 2.

Original entry on oeis.org

1, 2, 1, 1, 4, 1, 1, 6, 6, 1, 1, 6, 15, 8, 1, 1, 7, 23, 28, 10, 1, 1, 8, 30, 60, 45, 12, 1, 1, 9, 39, 98, 125, 66, 14, 1, 1, 10, 49, 144, 255, 226, 91, 16, 1, 1, 11, 60, 202, 437, 561, 371, 120, 18, 1, 1, 12, 72, 272, 685, 1128, 1092, 568, 153, 20, 1, 1, 13, 85, 355, 1015, 1995, 2555
Offset: 1

Views

Author

Emeric Deutsch, Apr 09 2005

Keywords

Comments

Triangle T(n,k), 1 <= k <= n, given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. Triangle T(n,k), 0 <= k <= n, is the Riordan array (1, x*(1+x-x^2)/(1-x)). - Philippe Deléham, Jan 25 2012

Examples

			T(4,2)=6 because we have (1,3),(3,1),(2,2),(2,2'),(2',2) and (2',2').
Triangle begins:
  1;
  2,  1;
  1,  4,  1;
  1,  6,  6,  1;
  1,  6, 15,  8,  1;
From _Philippe Deléham_, Jan 25 2012: (Start)
Triangle T(n,k) given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, ...) DELTA (1,0,0,0,0,...) begins:
  1;
  0,  1;
  0,  2,  1;
  0,  1,  4,  1;
  0,  1,  6,  6,  1;
  0,  1,  6, 15,  8,  1; ... (End)
		

Crossrefs

Row sums yield A077998.
Diagonals: A000012, A005843, A000384.

Programs

  • Maple
    G:=t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3): Gser:=simplify(series(G,z=0,15)): for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 13 do seq(coeff(P[n],t^k),k=1..n) od; # yields sequence in triangular form

Formula

G.f. = t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3).
T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-2j-1, k-j-1). - Emeric Deutsch, Aug 06 2006
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-1), n > 1. - Philippe Deléham, Jan 25 2012

A199853 Expansion of (1-3*x+x^3)/(1-2*x-x^2+x^3).

Original entry on oeis.org

1, -1, -1, -3, -6, -14, -31, -70, -157, -353, -793, -1782, -4004, -8997, -20216, -45425, -102069, -229347, -515338, -1157954, -2601899, -5846414, -13136773, -29518061, -66326481, -149034250, -334876920, -752461609, -1690765888, -3799116465, -8536537209
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2011

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==-1, a[2]== -1, a[3]== -3, a[n]== 2*a[n-1]  + a[n-2] - a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 13 2015 *)
    CoefficientList[Series[(1-3x+x^3)/(1-2x-x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[{2,1,-1},{1,-1,-1,-3},40] (* Harvey P. Dale, May 31 2021 *)
  • PARI
    Vec((1-3*x+x^3)/(1-2*x-x^2+x^3) + O(x^40)) \\ Michel Marcus, Aug 13 2015

Formula

a(n) = 2*a(n-1) + a(n-2) - a(n-3) with a(0)=1, a(1)=-1, a(2)=-1, a(3)=-3.
a(n+1) = - A077998(n). - G. C. Greubel, Aug 14 2015

A052559 Expansion of e.g.f. (1-x)/(1 - 2*x - x^2 + x^3).

Original entry on oeis.org

1, 1, 6, 36, 336, 3720, 50400, 791280, 14232960, 287763840, 6466521600, 159826867200, 4309577395200, 125885452492800, 3960073877760000, 133473015067392000, 4798579092443136000, 183299247820136448000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)/(1-2*x-x^2+x^3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 06 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-x)/(1-2x-x^2+x^3),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 14 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( (1-x)/(1-2*x-x^2+x^3) )) \\ G. C. Greubel, May 06 2019
    
  • Sage
    m = 30; T = taylor((1-x)/(1-2*x-x^2+x^3), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 06 2019

Formula

E.g.f.: (1-x)/(1 - 2*x - x^2 + x^3).
a(n) = 2*n*a(n-1) + n*(n-1)*a(n-2) - n*(n-1)*(n-2)*a(n-3), with a(0)=1, a(1)=1, a(2)=6.
a(n) = Sum((-1/7)*(-2*_alpha+_alpha^2-1)*_alpha^(-1-n), _alpha = RootOf(_Z^3-_Z^2-2*_Z+1))*n!.
a(n) = n!*A077998(n). - R. J. Mathar, Nov 27 2011

A123508 1-dimensional quasiperiodic heptagonal sequence.

Original entry on oeis.org

1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 01 2006

Keywords

Comments

Each iterative subset can be parsed into secondary subsets relating to A077998, a sequence generated from the Heptagonal matrix M, [1, 1, 1; 1, 1, 0; 1, 0, 0]: 1, 1, 3, 6, 14, 31, 70, ...as follows (Cf. Steinbach): Performing M^n * [1,0,0] we get 3 sets of vectors, read by rows: 1, 0, 0 1, 1, 1 3, 2, 1 6, 5, 3 .. where the n-th row pertains to the n-th iterative subset of the sequence. E.g. (3, 2, 1) is the distribution of 3's, 2's and 1's in (3,1,3,2,2,3). Furthermore, the vectors generated from M relate to the Heptagon diagonals as follows: (E.g.: given the Heptagon diagonals a = 2.24697960...(1 + 2*Cos 2Pi/7); b = 1,80193773...(2*Cos Pi/7) and c = 1 (the edge); then select any 3-termed row in the vectors, such as row 4, (6, 5, 3). Then a^4 = 6*a + 5*b + 3*1.

Examples

			1=>3; 3=>1,3,2; then the previous subset generates 3,1,3,2,2,3. The resulting subsets are (1), (1,3,2), (3,1,3,2,2,3)...which we combine to form a continuous sequence.
		

Crossrefs

Cf. A077998.

Formula

Let a(n) = 1; then iterate using the rules 1=>3; 2=>2,3; 3=>1,3,2; Append each successive iterate to the right, creating an infinite string.

A052613 E.g.f. (1-2x)/(1-2x-x^2+x^3).

Original entry on oeis.org

1, 0, 2, 6, 72, 720, 10080, 156240, 2822400, 56972160, 1280966400, 31654022400, 853580851200, 24932991283200, 784343085926400, 26435945023488000, 950417730662400000, 36304660098330624000, 1468365202287599616000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Z,Z,Sequence(Prod(Z,Sequence(Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-2x)/(1-2x-x^2+x^3),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 08 2015 *)

Formula

E.g.f.: -(-1+2*x)/(x^3-x^2-2*x+1)
Recurrence: {a(1)=0, a(0)=1, a(2)=2, (n^3+6*n^2+11*n+6)*a(n) +(-n^2-5*n-6)*a(n+1) +(-2*n-6)*a(n+2) +a(n+3)=0}
Sum(1/7*(-1+3*_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^3-_Z^2-2*_Z+1))*n!
a(n)=n!*A077998(n-2), n>=2. - R. J. Mathar, Jun 03 2022

A052640 E.g.f. x*(1-x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

0, 1, 2, 18, 144, 1680, 22320, 352800, 6330240, 128096640, 2877638400, 71131737600, 1917922406400, 56024506137600, 1762396334899200, 59401108166400000, 2135568241078272000, 81575844571533312000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Prod(Z,Sequence(Prod(Z,Union(Z,Sequence(Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[-x*(-1+x)/(x^3-x^2-2*x+1),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 10 2023 *)

Formula

E.g.f.: -x*(-1+x)/(x^3-x^2-2*x+1)
Recurrence: {a(1)=1, a(0)=0, a(2)=2, (n^3+6*n^2+11*n+6)*a(n)+(-n^2-5*n-6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)=0}
Sum(1/7*(-_alpha+_alpha^2+1)*_alpha^(-1-n), _alpha=RootOf(_Z^3-_Z^2-2*_Z+1))*n!
a(n) = n!*A077998(n-1), n>0. - R. J. Mathar, Nov 27 2011

A052971 Expansion of (1-x)/(1-2*x-2*x^3+2*x^4).

Original entry on oeis.org

1, 1, 2, 6, 12, 26, 60, 132, 292, 652, 1448, 3216, 7152, 15896, 35328, 78528, 174544, 387952, 862304, 1916640, 4260096, 9468896, 21046464, 46779840, 103977280, 231109696, 513686144, 1141767168, 2537799168, 5640751232, 12537664512, 27867393024, 61940690176
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of compositions of n using three colors of 3. Compare to A077998 which gives the number of compositions of n using two colors of 2. - Greg Dresden and Yushu Fan, Aug 15 2023

Crossrefs

Cf. A077998.

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Union(Prod(Union(Z,Z),Z),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x-2x^3+2x^4),{x,0,30}],x] (* or *) LinearRecurrence[{2,0,2,-2},{1,1,2,6},32] (* Harvey P. Dale, Jul 23 2012 *)

Formula

G.f.: -(-1+x)/(1-2*x-2*x^3+2*x^4).
Recurrence: {a(1)=1, a(0)=1, a(3)=6, a(2)=2, 2*a(n)-2*a(n+1)-2*a(n+3)+a(n+4)=0}.
Sum(-1/227*(-29-50*_alpha+45*_alpha^3-14*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z-2*_Z^3+2*_Z^4)).

Extensions

More terms from James Sellers, Jun 06 2000

A120771 Expansion of ( 1-x^3+x^4+x^5-x^8 ) / ( 1-2*x^3-x^6+x^9 ).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 2, 1, 6, 5, 3, 14, 11, 6, 31, 25, 14, 70, 56, 31, 157, 126, 70, 353, 283, 157, 793, 636, 353, 1782, 1429, 793, 4004, 3211, 1782, 8997, 7215, 4004, 20216, 16212, 8997, 45425, 36428, 20216, 102069, 81853, 45425, 229347, 183922, 102069, 515338, 413269, 229347, 1157954, 928607, 515338
Offset: 0

Views

Author

Gary W. Adamson, Jul 03 2006

Keywords

Crossrefs

Cf. A077998 (trisection), A006054 (trisection), A006356 (trisection), A038196.

Programs

  • Mathematica
    CoefficientList[Series[(1-x^3+x^4+x^5-x^8)/(1-2*x^3-x^6+x^9),{x,0,60}],x] (* or *) LinearRecurrence[{0,0,2,0,0,1,0,0,-1},{1,0,0,1,1,1,3,2,1},60] (* Harvey P. Dale, Feb 19 2016 *)

Formula

Three consecutive coefficients are generated from the left row of the n-th power of the matrix [1,1,1; 1,1,0; 1,0,0].

A121302 Number of directed column-convex polyominoes having at least one 1-cell column.

Original entry on oeis.org

1, 1, 4, 10, 28, 75, 202, 540, 1440, 3828, 10153, 26875, 71021, 187421, 494013, 1300844, 3422509, 8998118, 23642479, 62088032, 162978242, 427648023, 1121766397, 2941697012, 7712415568, 20215976824, 52981414253, 138831400836
Offset: 1

Views

Author

Emeric Deutsch, Aug 04 2006

Keywords

Comments

a(n) = Fibonacci(2n-1) - A121469(n,0) (obviously, since A121469(n,k) is the number of directed column-convex polyominoes of area n having k 1-cell columns). Column 1 of A121301.

Examples

			a(3)=4 because, with the exception of the 3-cell column, all the other four directed column-convex polyominoes of area 3 have a 1-cell column.
		

Crossrefs

Programs

  • Maple
    G:=z*(1-z)*(1-3*z+2*z^2)/(1-3*z+z^2)/(1-2*z-z^2+z^3): Gser:=series(G,z=0,35): seq(coeff(Gser,z,n),n=1..32);
  • PARI
    Vec(z*(1-z)*(1-3*z+2*z^2)/((1-3*z+z^2)*(1-2*z-z^2+z^3)) + O(z^40)) \\ Michel Marcus, Feb 14 2016

Formula

G.f.: z(1-z)(1-3z+2z^2)/[(1-3z+z^2)(1-2z-z^2+z^3)].
a(n) = A001519(n)-A077998(n-2), n>0. - R. J. Mathar, Jul 22 2022

A362379 Convolution triangle of A052547(n).

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 1, 4, 0, 1, 5, 2, 6, 0, 1, 5, 14, 3, 8, 0, 1, 14, 14, 27, 4, 10, 0, 1, 19, 49, 27, 44, 5, 12, 0, 1, 42, 68, 113, 44, 65, 6, 14, 0, 1, 66, 175, 159, 214, 65, 90, 7, 16, 0, 1, 131, 286, 465, 304, 360, 90, 119, 8, 18, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 20 2023

Keywords

Examples

			Triangle begins, for n>=0, 0<=k<=n :
   1 ;
   0,  1 ;
   2,  0,   1 ;
   1,  4,   0,  1 ;
   5,  2,   6,  0,  1 ;
   5, 14,   3,  8,  0,  1 ;
  14, 14,  27,  4, 10,  0,  1 ;
  19, 49,  27, 44,  5, 12,  0, 1 ;
  42, 68, 113, 44, 65,  6, 14, 0, 1 ;
  ...
		

Crossrefs

Cf. A052547, A077998 (row sums), A052964 (diagonal sums).

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k) - T(n-2,k-1) - T(n-3,k) ; T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,1) = 0, T(2,0) = 2, T(n,k) = 0 if k<0 or if k>n .
Sum_{k = 0..n} T(n,k)*x^k = A052547(n), A077998(n), A052536(n), A052941(n) for x = 0, 1, 2, 3 respectively.
Sum_{k = 0..n} T(n,k)*2^(n-k) = A139818(n+1) = A001045(n+1)^2.
Previous Showing 21-30 of 31 results. Next