cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A326625 Number of strict integer partitions of n whose geometric mean is an integer.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 2, 1, 2, 1, 2, 4, 3, 1, 2, 1, 4, 5, 2, 3, 3, 3, 5, 1, 3, 5, 5, 3, 4, 4, 7, 7, 5, 5, 2, 4, 2, 5, 7, 4, 6, 9, 5, 7, 7, 8, 7, 5, 11, 5, 9, 9, 9, 7, 9, 5, 13, 7, 9, 7, 11, 12, 7, 7, 12, 9, 13, 11, 10, 13, 7, 14
Offset: 0

Views

Author

Gus Wiseman, Jul 14 2019

Keywords

Examples

			The a(63) = 9 partitions:
  (63)  (36,18,9)  (54,4,3,2)   (36,18,6,2,1)   (36,9,8,6,3,1)
        (48,12,3)  (27,24,8,4)  (18,16,12,9,8)
                   (32,18,9,4)
The initial terms count the following partitions:
   1: (1)
   2: (2)
   3: (3)
   4: (4)
   5: (5)
   5: (4,1)
   6: (6)
   7: (7)
   7: (4,2,1)
   8: (8)
   9: (9)
  10: (10)
  10: (9,1)
  10: (8,2)
  11: (11)
  12: (12)
  13: (13)
  13: (9,4)
  13: (9,3,1)
  14: (14)
  14: (8,4,2)
  15: (15)
  15: (12,3)
  16: (16)
		

Crossrefs

Partitions whose geometric mean is an integer are A067539.
Strict partitions whose average is an integer are A102627.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]

A360556 Numbers > 1 whose first differences of 0-prepended prime indices have integer median.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so 1617 is not in the sequence.
		

Crossrefs

For mean instead of median we have A340610.
Positions of even terms in A360555.
The complement is A360557 (without 1).
These partitions are counted by A360688.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A112798 lists prime indices, length A001222, sum A056239.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.
A360614/A360615 = mean of first differences of 0-prepended prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],IntegerQ[Median[Differences[Prepend[prix[#],0]]]]&]

A326641 Number of integer partitions of n whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 2, 4, 3, 6, 2, 7, 2, 4, 5, 6, 2, 6, 2, 10, 6, 4, 2, 11, 4, 6, 5, 8, 2, 15, 2, 10, 6, 6, 8, 16, 2, 4, 8, 20, 2, 17, 2, 8, 17, 4, 2, 27, 9, 20, 8, 14, 2, 21, 10, 35, 10, 6, 2, 48, 2, 4, 41, 39, 12, 28, 2, 17, 10, 64, 2, 103, 2, 6, 23
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326645.

Examples

			The a(4) = 3 through a(10) = 6 partitions (A = 10):
  (4)     (5)      (6)       (7)        (8)         (9)          (A)
  (22)    (11111)  (33)      (1111111)  (44)        (333)        (55)
  (1111)           (222)                (2222)      (111111111)  (82)
                   (111111)             (11111111)               (91)
                                                                 (22222)
                                                                 (1111111111)
		

Crossrefs

Partitions with integer mean are A067538.
Partitions with integer geometric mean are A067539.
Non-constant partitions with integer mean and geometric mean are A326642.
Subsets with integer mean and geometric mean are A326643.
Heinz numbers of partitions with integer mean and geometric mean are A326645.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]

A123529 Denominator of average of prime factors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 1, 1, 3, 2, 1, 5, 1, 1, 1, 3, 1, 4, 1, 4, 1, 2, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 2, 3, 3, 1, 1, 1, 5, 1, 2, 1, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 6, 1, 3, 3, 2, 1, 3, 1, 4, 1, 2
Offset: 2

Views

Author

Keywords

Comments

Prime factors counted with multiplicity. - Harvey P. Dale, Jun 20 2013
Positions of 1's are A078175. a(n) is a divisor of Omega(n) = A001222(n). The average of prime indices (as opposed to prime factors) of n is A326567(n)/A326568(n). - Gus Wiseman, Jul 18 2019

Crossrefs

See A123528 for more formulas and references.

Programs

  • Mathematica
    Table[Denominator[Mean[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]]]],{n,110}] (* Harvey P. Dale, Jun 20 2013 *)

A326645 Heinz numbers of integer partitions whose mean and geometric mean are both integers.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 46, 47, 49, 53, 57, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 183, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326641.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
   41: {13}
   43: {14}
   46: {1,9}
   47: {15}
   49: {4,4}
		

Crossrefs

Heinz numbers of partitions with integer mean are A316413.
Heinz numbers of partitions with integer geometric mean are A326623.
Heinz numbers of non-constant partitions with integer mean and geometric mean are A326646.
Partitions with integer mean and geometric mean are A326641.
Subsets with integer mean and geometric mean are A326643.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[Mean[primeMS[#]]]&&IntegerQ[GeometricMean[primeMS[#]]]&]

A360557 Numbers > 1 whose sorted first differences of 0-prepended prime indices have non-integer median.

Original entry on oeis.org

4, 10, 15, 22, 24, 25, 33, 34, 36, 40, 46, 51, 54, 55, 56, 62, 69, 77, 82, 85, 88, 93, 94, 100, 104, 115, 118, 119, 121, 123, 134, 135, 136, 141, 146, 152, 155, 161, 166, 177, 184, 187, 194, 196, 201, 205, 206, 217, 218, 219, 220, 221, 225, 232, 235, 240, 248
Offset: 1

Views

Author

Gus Wiseman, Feb 17 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so 1617 is in the sequence.
		

Crossrefs

For mean instead of median complement we have A340610, counted by A168659.
For mean instead of median we have A360668, counted by A200727.
Positions of odd terms in A360555.
The complement is A360556 (without 1), counted by A360688.
These partitions are counted by A360691.
- For divisors (A063655) we have A139710, complement A139711.
- For prime indices (A360005) we have A359912, complement A359908.
- For distinct prime indices (A360457) we have A360551, complement A360550.
- For distinct prime factors (A360458) we have A100367, complement A360552.
- For prime factors (A360459) we have A072978, complement A359913.
- For prime multiplicities (A360460) we have A360554, complement A360553.
- For 0-prepended differences (A360555) we have A360557, complement A360556.
A112798 lists prime indices, length A001222, sum A056239.
A287352 lists 0-prepended first differences of prime indices.
A325347 counts partitions with integer median, complement A307683.
A355536 lists first differences of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.
A360614/A360615 = mean of first differences of 0-prepended prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],!IntegerQ[Median[Differences[Prepend[prix[#],0]]]]&]

A326643 Number of subsets of {1..n} whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 30, 31, 32, 33, 34, 35, 41, 46, 47, 70, 71, 72, 73, 74, 102, 103, 104, 105, 143, 144, 145, 146, 151, 152, 153, 154, 155, 161, 162, 163, 244, 252, 280, 281, 282, 283, 409, 410, 416, 417, 418, 419
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(1) = 1 through a(12) = 16 subsets:
  {1}  {1}  {1}  {1}  {1}  {1}  {1}  {1}    {1}    {1}    {1}    {1}
       {2}  {2}  {2}  {2}  {2}  {2}  {2}    {2}    {2}    {2}    {2}
            {3}  {3}  {3}  {3}  {3}  {3}    {3}    {3}    {3}    {3}
                 {4}  {4}  {4}  {4}  {4}    {4}    {4}    {4}    {4}
                      {5}  {5}  {5}  {5}    {5}    {5}    {5}    {5}
                           {6}  {6}  {6}    {6}    {6}    {6}    {6}
                                {7}  {7}    {7}    {7}    {7}    {7}
                                     {8}    {8}    {8}    {8}    {8}
                                     {2,8}  {9}    {9}    {9}    {9}
                                            {1,9}  {10}   {10}   {10}
                                            {2,8}  {1,9}  {11}   {11}
                                                   {2,8}  {1,9}  {12}
                                                          {2,8}  {1,9}
                                                                 {2,8}
                                                                 {3,6,12}
                                                                 {3,4,9,12}
		

Crossrefs

Partial sums of A326644.
Subsets whose geometric mean is an integer are A326027.
Subsets whose mean is an integer are A051293.
Partitions with integer mean and geometric mean are A326641.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,10}]

Extensions

More terms from David Wasserman, Aug 03 2019

A326624 Heinz numbers of non-constant integer partitions whose geometric mean is an integer.

Original entry on oeis.org

14, 42, 46, 57, 76, 106, 126, 161, 183, 185, 194, 196, 228, 230, 302, 371, 378, 393, 399, 412, 424, 454, 477, 515, 588, 622, 679, 684, 687, 722, 742, 781, 786, 838, 1057, 1064, 1077, 1082, 1115, 1134, 1150, 1157, 1159, 1219, 1244, 1272, 1322, 1563, 1589, 1654
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    14: {1,4}
    42: {1,2,4}
    46: {1,9}
    57: {2,8}
    76: {1,1,8}
   106: {1,16}
   126: {1,2,2,4}
   161: {4,9}
   183: {2,18}
   185: {3,12}
   194: {1,25}
   196: {1,1,4,4}
   228: {1,1,2,8}
   230: {1,3,9}
   302: {1,36}
   371: {4,16}
   378: {1,2,2,2,4}
   393: {2,32}
   399: {2,4,8}
   412: {1,1,27}
		

Crossrefs

The case with prime powers is A326623.
Subsets whose geometric mean is an integer are A326027.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!PrimePowerQ[#]&&IntegerQ[GeometricMean[primeMS[#]]]&]

A359913 Numbers whose multiset of prime factors has integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime factors begin:
   2: {2}
   3: {3}
   4: {2,2}
   5: {5}
   7: {7}
   8: {2,2,2}
   9: {3,3}
  11: {11}
  12: {2,2,3}
  13: {13}
  15: {3,5}
  16: {2,2,2,2}
  17: {17}
  18: {2,3,3}
  19: {19}
  20: {2,2,5}
  21: {3,7}
  23: {23}
  24: {2,2,2,3}
		

Crossrefs

Prime factors are listed by A027746.
The complement is A072978, for prime indices A359912.
For mean instead of median we have A078175, for prime indices A316413.
For prime indices instead of factors we have A359908, counted by A325347.
Positions of even terms in A360005.
A067340 lists numbers whose prime signature has integer mean.
A112798 lists prime indices, length A001222, sum A056239.
A325347 counts partitions with integer median, strict A359907.
A326567/A326568 gives the mean of prime indices, conjugate A326839/A326840.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[Median[Flatten[ConstantArray@@@FactorInteger[#]]]]&]

A360553 Numbers > 1 whose unordered prime signature has integer median.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

First differs from A067340 in having 60.
A number's unordered prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The unordered prime signature of 60 is {1,1,2}, with median 1, so 60 is in the sequence.
The unordered prime signature of 1260 is {1,1,2,2}, with median 3/2, so 1260 is not in the sequence.
		

Crossrefs

For mean instead of median we have A067340, complement A070011.
Positions of even terms in A360460.
The complement is A360554 (without 1).
These partitions are counted by A360687.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A112798 lists prime indices, length A001222, sum A056239.
A124010 lists prime signature.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.
A360454 = numbers whose prime indices and signature have the same median.

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[Median[Last/@FactorInteger[#]]]&]
Previous Showing 11-20 of 46 results. Next