cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 75 results. Next

A303138 Regular triangle where T(n,k) is the number of strict integer partitions of n with greatest common divisor k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 1, 6, 0, 1, 0, 0, 0, 0, 0, 1, 7, 2, 0, 0, 0, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 17, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 0, 2, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2018

Keywords

Examples

			Triangle begins:
01:   1
02:   0  1
03:   1  0  1
04:   1  0  0  1
05:   2  0  0  0  1
06:   2  1  0  0  0  1
07:   4  0  0  0  0  0  1
08:   4  1  0  0  0  0  0  1
09:   6  0  1  0  0  0  0  0  1
10:   7  2  0  0  0  0  0  0  0  1
11:  11  0  0  0  0  0  0  0  0  0  1
12:  10  2  1  1  0  0  0  0  0  0  0  1
13:  17  0  0  0  0  0  0  0  0  0  0  0  1
14:  17  4  0  0  0  0  0  0  0  0  0  0  0  1
15:  23  0  2  0  1  0  0  0  0  0  0  0  0  0  1
The strict partitions counted in row 12 are the following.
T(12,1) = 10: (11,1) (9,2,1) (8,3,1) (7,5) (7,4,1) (7,3,2) (6,5,1) (6,3,2,1) (5,4,3) (5,4,2,1)
T(12,2) = 2:  (10,2) (6,4,2)
T(12,3) = 1:  (9,3)
T(12,4) = 1:  (8,4)
T(12,12) = 1: (12)
		

Crossrefs

First column is A078374. Second column at even indices is same as first column. Row sums are A000009. Row sums with first column removed are A303280.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#===k&]],{n,15},{k,n}]

Formula

If k divides n, T(n,k) = A078374(n/k); otherwise T(n,k) = 0.

A328672 Number of integer partitions of n with relatively prime parts in which no two distinct parts are relatively prime.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 4, 1, 1, 2, 7, 1, 6, 1, 3, 3, 10, 1, 9, 3, 5, 4, 17, 1, 23, 6, 7, 6, 20, 3, 36, 9, 15, 7, 45, 5, 56, 14, 17, 20, 65, 7, 83, 18, 40
Offset: 0

Views

Author

Gus Wiseman, Oct 29 2019

Keywords

Comments

Positions of terms greater than 1 are {31, 37, 41, 43, 46, 47, 49, ...}.
A partition with no two distinct parts relatively prime is said to be intersecting.

Examples

			Examples:
  a(31) = 2:         a(46) = 2:
    (15,10,6)          (15,15,10,6)
    (1^31)             (1^46)
  a(37) = 3:         a(47) = 7:
    (15,12,10)         (20,15,12)
    (15,10,6,6)        (21,14,12)
    (1^37)             (20,15,6,6)
  a(41) = 4:           (21,14,6,6)
    (20,15,6)          (15,12,10,10)
    (21,14,6)          (15,10,10,6,6)
    (15,10,10,6)       (1^47)
    (1^41)           a(49) = 6:
  a(43) = 4:           (24,15,10)
    (18,15,10)         (18,15,10,6)
    (15,12,10,6)       (15,12,12,10)
    (15,10,6,6,6)      (15,12,10,6,6)
    (1^43)             (15,10,6,6,6,6)
                       (1^39)
		

Crossrefs

The Heinz numbers of these partitions are A328679.
The strict case is A318715.
The version for non-isomorphic multiset partitions is A319759.
Relatively prime partitions are A000837.
Intersecting partitions are A328673.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&And[And@@(GCD[##]>1&)@@@Subsets[Union[#],{2}]]&]],{n,0,32}]

Formula

a(n > 0) = A202425(n) + 1.

A341914 Number of partitions of n into 10 distinct and relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 75, 97, 128, 164, 212, 267, 340, 423, 530, 653, 807, 984, 1204, 1455, 1761, 2112, 2534, 3015, 3590, 4242, 5013, 5888, 6912, 8070, 9418, 10936, 12690, 14663, 16928, 19466, 22367, 25608, 29292, 33401, 38047, 43214, 49037, 55494, 62740, 70760, 79725, 89623
Offset: 55

Views

Author

Ilya Gutkovskiy, Feb 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 108; CoefficientList[Series[Sum[MoebiusMu[k] x^(55 k)/Product[1 - x^(j k), {j, 1, 10}], {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 55] &

Formula

G.f.: Sum_{k>=1} mu(k)* x^(55*k) / Product_{j=1..10} (1 - x^(j*k)).
a(n) <= A008639(n-55), equality for n<110. - R. J. Mathar, Feb 28 2021

A366850 Number of integer partitions of n whose odd parts are relatively prime.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 7, 11, 16, 22, 32, 43, 60, 80, 110, 140, 194, 244, 327, 410, 544, 670, 883, 1081, 1401, 1708, 2195, 2651, 3382, 4069, 5129, 6157, 7708, 9194, 11438, 13599, 16788, 19911, 24432, 28858, 35229, 41507, 50359, 59201, 71489, 83776, 100731, 117784
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 16 partitions:
  (1)  (11)  (21)   (31)    (41)     (51)      (61)       (53)
             (111)  (211)   (221)    (321)     (331)      (71)
                    (1111)  (311)    (411)     (421)      (431)
                            (2111)   (2211)    (511)      (521)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (3211)     (3221)
                                     (111111)  (4111)     (3311)
                                               (22111)    (4211)
                                               (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For all parts (not just odd) we have A000837, complement A018783.
The complement is counted by A366842.
These partitions have ranks A366846.
A000041 counts integer partitions, strict A000009 (also into odds).
A000740 counts relatively prime compositions.
A078374 counts relatively prime strict partitions.
A113685 counts partitions by sum of odd parts, rank statistic A366528.
A168532 counts partitions by gcd.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GCD@@Select[#,OddQ]==1&]],{n,0,30}]

A300277 G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} 1/(1 - n*x^n).

Original entry on oeis.org

1, 2, 5, 11, 24, 48, 96, 184, 348, 645, 1169, 2140, 3761, 6687, 11645, 20326, 34635, 59854, 100579, 171211, 285718, 479325, 791315, 1318955, 2156805, 3553589, 5783306, 9445861, 15250215, 24759156, 39713787, 63991400, 102197851, 163548416, 259744930, 413761633, 653715967
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 01 2018

Keywords

Comments

Moebius transform of A006906.

Crossrefs

Programs

  • Mathematica
    nn = 37; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[1/(1 - n x^n), {n, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
    s[n_] := SeriesCoefficient[Product[1/(1 - k x^k), {k, 1, n}], {x, 0, n}]; a[n_] := Sum[MoebiusMu[n/d] s[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 37}]

Formula

a(n) = Sum_{d|n} mu(n/d)*A006906(d).

A316500 Number of unlabeled rooted identity trees with n nodes in which the branches of any node with more than one branch have empty intersection.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 22, 46, 96, 205, 442, 976, 2146, 4789, 10719, 24202, 54841, 124967, 285724, 656011, 1510929, 3491151, 8088692, 18790084
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Examples

			The a(7) = 11 rooted identity trees:
  ((((((o))))))
  ((((o(o)))))
  (((o((o)))))
  ((o(((o)))))
  ((o(o(o))))
  (((o)((o))))
  (o((((o)))))
  (o((o(o))))
  (o(o((o))))
  ((o)(((o))))
  (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],UnsameQ@@#&&Or[Length[#]==1,Intersection@@#=={}]&]];
    Table[Length[strut[n]],{n,20}]

A324749 Number of strict integer partitions of n containing no part > 1 whose prime indices all belong to the partition.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 4, 3, 4, 6, 6, 8, 11, 10, 14, 14, 19, 21, 26, 28, 35, 38, 44, 50, 60, 65, 79, 88, 98, 113, 131, 144, 165, 185, 211, 234, 268, 297, 334, 374, 420, 470, 525, 584, 649, 727, 801, 902, 998, 1100, 1220, 1357, 1500, 1657, 1833, 2029, 2220, 2462
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(0) = 1 through a(10) = 6 strict integer partitions:
  ()  (1)  (2)  (3)  (4)    (5)  (6)    (7)    (8)    (9)    (10)
                     (3,1)       (4,2)  (4,3)  (6,2)  (5,4)  (6,4)
                                 (5,1)  (5,2)  (7,1)  (6,3)  (7,3)
                                        (6,1)         (7,2)  (8,2)
                                                             (9,1)
                                                             (6,3,1)
		

Crossrefs

The subset version is A324738. The non-strict version is A324754. The Heinz number version is A324759. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]

A338471 Products of three prime numbers of odd index.

Original entry on oeis.org

8, 20, 44, 50, 68, 92, 110, 124, 125, 164, 170, 188, 230, 236, 242, 268, 275, 292, 310, 332, 374, 388, 410, 412, 425, 436, 470, 506, 508, 548, 575, 578, 590, 596, 605, 628, 668, 670, 682, 716, 730, 764, 775, 782, 788, 830, 844, 902, 908, 932, 935, 964, 970
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

Also Heinz numbers of integer partitions with 3 parts, all of which are odd. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
       8: {1,1,1}      268: {1,1,19}     575: {3,3,9}
      20: {1,1,3}      275: {3,3,5}      578: {1,7,7}
      44: {1,1,5}      292: {1,1,21}     590: {1,3,17}
      50: {1,3,3}      310: {1,3,11}     596: {1,1,35}
      68: {1,1,7}      332: {1,1,23}     605: {3,5,5}
      92: {1,1,9}      374: {1,5,7}      628: {1,1,37}
     110: {1,3,5}      388: {1,1,25}     668: {1,1,39}
     124: {1,1,11}     410: {1,3,13}     670: {1,3,19}
     125: {3,3,3}      412: {1,1,27}     682: {1,5,11}
     164: {1,1,13}     425: {3,3,7}      716: {1,1,41}
     170: {1,3,7}      436: {1,1,29}     730: {1,3,21}
     188: {1,1,15}     470: {1,3,15}     764: {1,1,43}
     230: {1,3,9}      506: {1,5,9}      775: {3,3,11}
     236: {1,1,17}     508: {1,1,31}     782: {1,7,9}
     242: {1,5,5}      548: {1,1,33}     788: {1,1,45}
		

Crossrefs

A066208 allows products of any length (strict: A258116).
A307534 is the squarefree case.
A338469 is the restriction to odds.
A338556 is the version for evens (strict: A338557).
A000009 counts partitions into odd parts (strict: A000700).
A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
A008284 counts partitions by sum and length.
A014311 is a ranking of ordered triples (strict: A337453).
A014612 lists Heinz numbers of all triples (strict: A007304).
A023023 counts 3-part relatively prime partitions (strict: A101271).
A023023 counts 3-part relatively prime partitions (strict: A078374).
A046316 lists products of exactly three odd primes (strict: A046389).
A066207 lists numbers with all even prime indices (strict: A258117).
A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
A285508 lists Heinz numbers of non-strict triples.
A307719 counts 3-part pairwise coprime partitions (strict: A220377).
Subsequence of A332820.

Programs

  • Maple
    N:= 1000: # for terms <= N
    R:= NULL:
    for i from 1 by 2 do
      p:= ithprime(i);
      if p^3 >= N then break fi;
      for j from i by 2 do
        q:= ithprime(j);
        if p*q^2 >= N then break fi;
        for k from j by 2 do
          x:= p*q*ithprime(k);
          if x > N then break fi;
          R:= R,x;
    od od od:
    sort([R]); # Robert Israel, Jun 11 2025
  • Mathematica
    Select[Range[100],PrimeOmega[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • PARI
    isok(m) = my(f=factor(m)); (bigomega(f)==3) && (#select(x->!(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from sympy import primerange
    from itertools import combinations_with_replacement as mc
    def aupto(limit):
        pois = [p for i, p in enumerate(primerange(2, limit//4+1)) if i%2 == 0]
        return sorted(set(a*b*c for a, b, c in mc(pois, 3) if a*b*c <= limit))
    print(aupto(971)) # Michael S. Branicky, Aug 20 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A338471(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1)+1 for a,k in filter(lambda x:x[0]&1,enumerate(primerange(integer_nthroot(x,3)[0]+1),1)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

A338557 Products of three distinct prime numbers of even index.

Original entry on oeis.org

273, 399, 609, 741, 777, 903, 1113, 1131, 1281, 1443, 1491, 1653, 1659, 1677, 1729, 1869, 2067, 2109, 2121, 2247, 2373, 2379, 2451, 2639, 2751, 2769, 2919, 3021, 3081, 3171, 3219, 3367, 3423, 3471, 3477, 3633, 3741, 3801, 3857, 3913, 3939, 4047, 4053, 4173
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

All terms are odd.
Also sphenic numbers (A007304) with all even prime indices (A031215).
Also Heinz numbers of strict integer partitions with 3 parts, all of which are even. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
     273: {2,4,6}     1869: {2,4,24}    3219: {2,10,12}
     399: {2,4,8}     2067: {2,6,16}    3367: {4,6,12}
     609: {2,4,10}    2109: {2,8,12}    3423: {2,4,38}
     741: {2,6,8}     2121: {2,4,26}    3471: {2,6,24}
     777: {2,4,12}    2247: {2,4,28}    3477: {2,8,18}
     903: {2,4,14}    2373: {2,4,30}    3633: {2,4,40}
    1113: {2,4,16}    2379: {2,6,18}    3741: {2,10,14}
    1131: {2,6,10}    2451: {2,8,14}    3801: {2,4,42}
    1281: {2,4,18}    2639: {4,6,10}    3857: {4,8,10}
    1443: {2,6,12}    2751: {2,4,32}    3913: {4,6,14}
    1491: {2,4,20}    2769: {2,6,20}    3939: {2,6,26}
    1653: {2,8,10}    2919: {2,4,34}    4047: {2,8,20}
    1659: {2,4,22}    3021: {2,8,16}    4053: {2,4,44}
    1677: {2,6,14}    3081: {2,6,22}    4173: {2,6,28}
    1729: {4,6,8}     3171: {2,4,36}    4179: {2,4,46}
		

Crossrefs

For the following, NNS means "not necessarily strict".
A007304 allows all prime indices (not just even) (NNS: A014612).
A046389 allows all odd primes (NNS: A046316).
A258117 allows products of any length (NNS: A066207).
A307534 is the version for odds instead of evens (NNS: A338471).
A337453 is a different ranking of ordered triples (NNS: A014311).
A338556 is the NNS version.
A001399(n-6) counts strict 3-part partitions (NNS: A001399(n-3)).
A005117 lists squarefree numbers, with even case A039956.
A078374 counts 3-part relatively prime strict partitions (NNS: A023023).
A075819 lists even Heinz numbers of strict triples (NNS: A075818).
A220377 counts 3-part pairwise coprime strict partitions (NNS: A307719).
A258116 lists squarefree numbers with all odd prime indices (NNS: A066208).
A285508 lists Heinz numbers of non-strict triples.

Programs

  • Mathematica
    Select[Range[1000],SquareFreeQ[#]&&PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
  • PARI
    isok(m) = my(f=factor(m)); (bigomega(f)==3) && (omega(f)==3) && (#select(x->(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from itertools import filterfalse
    from math import isqrt
    from sympy import primepi, primerange, nextprime, integer_nthroot
    def A338557(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1) for a,k in filterfalse(lambda x:x[0]&1,enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2)) for b,m in filterfalse(lambda x:x[0]&1,enumerate(primerange(nextprime(k)+1,isqrt(x//k)+1),a+2))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

A339672 Number of partitions of n into 7 distinct and relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618, 733, 860, 1009, 1175, 1366, 1579, 1823, 2093, 2398, 2738, 3117, 3539, 4006, 4526, 5095, 5731, 6419, 7190, 8018, 8946, 9932, 11044, 12213, 13534, 14912, 16475, 18089, 19928, 21808
Offset: 28

Views

Author

Ilya Gutkovskiy, Feb 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[MoebiusMu[k] x^(28 k)/Product[1 - x^(j k), {j, 1, 7}], {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 28] &

Formula

G.f.: Sum_{k>=1} mu(k)* x^(28*k) / Product_{j=1..7} (1 - x^(j*k)).
Previous Showing 41-50 of 75 results. Next