cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A079432 a(n) = A079431(A079431(n)).

Original entry on oeis.org

4, 8, 9, 16, 20, 12, 28, 32, 15, 25, 44, 18, 52, 49, 21, 64, 68, 24, 76, 35, 27, 88, 92, 30, 40, 104, 33, 56, 116, 36, 124, 128, 39, 136, 50, 42, 148, 152, 45, 55, 164, 48, 172, 121, 51, 184, 188, 54, 77, 65, 57, 169, 212, 60, 70, 91, 63, 232, 236, 66, 244, 248, 69, 256
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 09 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := FactorInteger[n/2^IntegerExponent[n, 2]][[1, 1]]; A079431[n_] := Module[{p = f[n], m}, m = n+p; While[f[m] != p, m+=p]; m]; a[n_] := A079431[A079431[n]]; Array[a, 100] (* Amiram Eldar, Mar 26 2025 *)

Formula

A078701(a(n)) = A078701(A079431(n)) = A078701(n).

A080215 Binomial(greatest prime factor of n, smallest odd prime factor of n).

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 10, 2, 1, 1, 1, 1, 35, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 2, 165, 1, 21, 1, 1, 1, 286, 1, 1, 35, 1, 1, 10, 1, 1, 1, 1, 1, 680, 1, 1, 1, 462, 1, 969, 1, 1, 10, 1, 1, 35, 2, 1287, 165, 1, 1, 1771, 21, 1, 1, 1, 1, 10, 1, 330, 286, 1, 1, 1, 1, 1, 35
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := With[{f = Select[FactorInteger[n], #[[1]] != 2&]}, If[f == {}, 2, Binomial[f[[-1, 1]], f[[1, 1]]]]];
    Array[a, 100] (* Jean-François Alcover, Dec 02 2021 *)
  • PARI
    A080215(n) = if(1==n,n,my(f = factor(n)[, 1], v = select(x->((x%2)==1), f)); binomial(f[#f], if(#v, vecmin(v), 1))); \\ Antti Karttunen, Dec 23 2018

Formula

a(n) = binomial(A006530(n), A078701(n)). - Antti Karttunen, Dec 23 2018

A108738 a(n) = n/(smallest odd prime divisor of n), if any.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, 5, 16, 1, 6, 1, 4, 7, 2, 1, 8, 5, 2, 9, 4, 1, 10, 1, 32, 11, 2, 7, 12, 1, 2, 13, 8, 1, 14, 1, 4, 15, 2, 1, 16, 7, 10, 17, 4, 1, 18, 11, 8, 19, 2, 1, 20, 1, 2, 21, 64, 13, 22, 1, 4, 23, 14, 1, 24, 1, 2, 25, 4, 11, 26, 1, 16, 27, 2, 1, 28, 17, 2, 29, 8, 1
Offset: 1

Views

Author

S. Muthukrishnan (muthu(AT)research.att.com), Jun 23 2005

Keywords

Comments

a(n) = n if n has no odd prime divisor, i.e. for n = 2^k (k>=0).

Examples

			a(21) = 21/3 = 7.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local nn: nn:=factorset(n): if n=1 then 1 elif nn={2} then n elif nn[1]=2 then n/nn[2] else n/nn[1] fi end: seq(a(n),n=1..100); # Emeric Deutsch, Jun 24 2005
  • Mathematica
    f[n_] := If[IntegerQ@Log[2, n], n, pf = First /@ FactorInteger@n; If[ EvenQ@n, n/pf[[2]], n/pf[[1]] ]]; Array[f, 89] (* Robert G. Wilson v, Sep 02 2006 *)
  • PARI
    a(n) = my(v = select(x->((x%2)==1), factor(n)[,1]));  n/if (#v, vecmin(v), 1); \\ Michel Marcus, Oct 25 2017
    
  • PARI
    first(n) = {my(res = vector(n, i, i)); forprime(p = 3, n, for(k = 1, n\p, if(res[k*p] == k*p, res[k*p]\=p))); res} \\ David A. Corneth, Oct 25 2017

Formula

a(n) = n/A078701(n).

Extensions

More terms from Emeric Deutsch and Reinhard Zumkeller, Jun 24 2005

A112545 Least odd number k greater than 1 such that the sum of the predecessor and successor primes of the n-th prime is divisible by k or if no such odd k exists then 2.

Original entry on oeis.org

7, 5, 2, 5, 7, 2, 5, 3, 3, 3, 3, 5, 11, 3, 53, 3, 3, 3, 5, 3, 3, 3, 3, 5, 5, 13, 53, 5, 59, 61, 3, 3, 11, 5, 3, 157, 3, 3, 173, 3, 5, 11, 97, 7, 3, 211, 3, 113, 5, 3, 3, 5, 3, 257, 263, 3, 3, 3, 5, 7, 5, 151, 5, 157, 7, 3, 3, 7, 5, 3, 3, 3, 373, 3, 3, 3, 5, 13, 5, 5, 5, 7, 3, 3, 3, 3, 5, 5, 29, 3, 3
Offset: 2

Views

Author

Robert G. Wilson v, Jan 11 2006

Keywords

Comments

From Robert Israel, Apr 20 2017: (Start)
a(n) = A078701(prime(n-1)+prime(n+1)) unless that is 1, in which case a(n)=2.
a(n) = 2 if and only if for some m, A007053(m) = n or n-1 with prime(n-1)+prime(n+1) = 2^(m+1). The first m for which this occurs are 3,4,9,379,593, corresponding to n = 4,7,97 and approximately 3*10^116 and 1*10^181. Are there infinitely many? (End)

Crossrefs

Programs

  • Maple
    f:= proc(n) local t; t:= min(numtheory:-factorset(ithprime(n-1)+ithprime(n+1)) minus {2}); if t::integer then t else 2 fi end proc:
    map(f, [$2..200]); # Robert Israel, Apr 20 2017
  • Mathematica
    f[n_] := Block[{k = 3, s = Prime[n - 1] + Prime[n + 1]}, While[Mod[s, k] != 0 && k <= s, k += 2]; If[k > s, 2, k]]; Table[ f[n], {n, 2, 92}]
  • PARI
    a(n) = {p = prime(n); s = precprime(p-1) + nextprime(p+1); f = factor(s); if (#f~ > 1, f[2,1], f[1,1]);} \\ Michel Marcus, Apr 22 2017

A293958 Smallest odd prime divisor of (2n+1)^2 + 1.

Original entry on oeis.org

5, 13, 5, 41, 61, 5, 113, 5, 181, 13, 5, 313, 5, 421, 13, 5, 613, 5, 761, 29, 5, 1013, 5, 1201, 1301, 5, 17, 5, 1741, 1861, 5, 2113, 5, 2381, 2521, 5, 29, 5, 3121, 17, 5, 3613, 5, 17, 41, 5, 4513, 5, 13, 5101, 5, 37, 5, 13, 61, 5, 17, 5, 73, 7321, 5, 13, 5, 53, 8581, 5, 13, 5, 9661, 9941, 5
Offset: 1

Views

Author

N. J. A. Sloane, Nov 04 2017, following a suggestion from Zoran Sunic

Keywords

Comments

If the map "x -> smallest odd prime divisor of n^2+1" is iterated, does it always terminate in the 2-cycle (5 <-> 13)? - Zoran Sunic, Oct 25 2017
A027862 is a subsequence. - David A. Corneth, Nov 04 2017

Crossrefs

A bisection of A125256. Cf. A027862, A069894, A078701, A256970.

Programs

  • Mathematica
    sod[n_]:=With[{fi=FactorInteger[n]},If[fi[[1,1]]==2,fi[[2,1]],fi[1,1]]]; sod/@(Range[3,151,2]^2+1) (* Harvey P. Dale, Dec 23 2023 *)
  • PARI
    a(n) = factor((2*n+1)^2 + 1)[2,1]; \\ Michel Marcus, Nov 04 2017

Formula

a(n) = A078701(A069894(n)). - Michel Marcus, Nov 04 2017

A336650 a(n) = p^e, where p is the smallest odd prime factor of n, and e is its exponent, with a(n) = 1 when n is a power of two.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 3, 1, 17, 9, 19, 5, 3, 11, 23, 3, 25, 13, 27, 7, 29, 3, 31, 1, 3, 17, 5, 9, 37, 19, 3, 5, 41, 3, 43, 11, 9, 23, 47, 3, 49, 25, 3, 13, 53, 27, 5, 7, 3, 29, 59, 3, 61, 31, 9, 1, 5, 3, 67, 17, 3, 5, 71, 9, 73, 37, 3, 19, 7, 3, 79, 5, 81, 41, 83, 3, 5, 43, 3, 11, 89, 9, 7, 23, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Crossrefs

Programs

  • PARI
    A336650(n) = if(!bitand(n,n-1),1,my(f=factor(n>>valuation(n,2))); f[1, 1]^f[1, 2]);

Formula

a(n) = A028233(A000265(n)).

A376431 a(n) is the least odd prime factor of prime(n)^prime(n)-1.

Original entry on oeis.org

3, 13, 11, 3, 5, 3, 10949, 3, 11, 7, 3, 3, 5, 3, 23, 13, 29, 3, 3, 5, 3, 3, 41, 11, 3, 5, 3, 53, 3, 7, 3, 5, 17, 3, 37, 3, 3, 3, 83, 43, 89, 3, 5, 3, 7, 3, 3, 3, 113, 3, 29, 7, 3, 5, 21589, 131, 67, 3, 3, 5, 3, 73, 3, 5, 3, 79, 3, 3, 173, 3, 11, 179, 3, 3, 3, 191
Offset: 1

Views

Author

Hugo Pfoertner, Sep 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a376431(n) = my(pp=prime(n)^prime(n)-1); forprime (p=3, oo, if(pp%p==0, return(p)))

Formula

a(n) = A078701(A088730(n)). - Michel Marcus, Sep 27 2024

A376432 a(n) is the least odd prime factor of prime(n)^prime(n)+1.

Original entry on oeis.org

5, 7, 3, 113, 3, 7, 3, 5, 3, 3, 373, 19, 3, 11, 3, 3, 3, 31, 17, 3, 37, 5, 3, 3, 7, 3, 13, 3, 5, 3, 921259, 3, 3, 5, 3, 19, 79, 41, 3, 3, 3, 7, 3, 97, 3, 5, 53, 7, 3, 5, 3, 3, 11, 3, 3, 3, 3, 17, 139, 3, 71, 3, 7, 3, 157, 3, 83, 13, 3, 5, 3, 3, 23, 11, 5, 3, 3, 199
Offset: 1

Views

Author

Hugo Pfoertner, Sep 27 2024

Keywords

Examples

			While almost all terms lie in the range between 3 and (prime(n)+1)/2, there are some notable outliers: a(31) = 921259 with prime(31)=127 (127^127+1=2^7*a(31)*C268), and a(1028)=1528928750837 with prime(1028)=8191 (8191^8191+1=2^13*a(1028)*C32039), Cx being composite with x decimal digits.
		

Crossrefs

Programs

  • PARI
    a376432(n) = my(pp=prime(n)^prime(n)+1); forprime (p=3, oo, if(pp%p==0, return(p)))

Formula

a(n) = A078701(A125137(n)). - Michel Marcus, Sep 27 2024

A023505 Least odd prime divisor of prime(n) - 1, or 1 if prime(n) - 1 is a power of 2.

Original entry on oeis.org

1, 1, 1, 3, 5, 3, 1, 3, 11, 7, 3, 3, 5, 3, 23, 13, 29, 3, 3, 5, 3, 3, 41, 11, 3, 5, 3, 53, 3, 7, 3, 5, 17, 3, 37, 3, 3, 3, 83, 43, 89, 3, 5, 3, 7, 3, 3, 3, 113, 3, 29, 7, 3, 5, 1, 131, 67, 3, 3, 5, 3, 73, 3, 5, 3, 79, 3, 3, 173, 3, 11, 179, 3, 3, 3, 191, 97, 3, 5, 3, 11, 3, 5, 3, 3
Offset: 1

Views

Author

Keywords

Comments

Note that a(n)=1 for n= 1,2,3,7,55,6543, ... . - Michel Marcus, Oct 01 2013

Crossrefs

Programs

  • PARI
    a(n) = my(p = prime(n) - 1, v = p/(2^valuation(p, 2))) ; if (v == 1, 1, factor(v)[1, 1]); \\ Michel Marcus, Oct 01 2013

Formula

a(n) = A078701(A006093(n)). - R. J. Mathar, Feb 06 2019

A023578 Least odd prime divisor of prime(n)+3, or 1 if prime(n)+3 is a power of 2.

Original entry on oeis.org

5, 3, 1, 5, 7, 1, 5, 11, 13, 1, 17, 5, 11, 23, 5, 7, 31, 1, 5, 37, 19, 41, 43, 23, 5, 13, 53, 5, 7, 29, 5, 67, 5, 71, 19, 7, 5, 83, 5, 11, 7, 23, 97, 7, 5, 101, 107, 113, 5, 29, 59, 11, 61, 127, 5, 7, 17, 137, 5, 71, 11, 37, 5, 157, 79, 5, 167, 5, 5, 11, 89, 181, 5, 47, 191
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(p = prime(n)+3, v = p/(2^valuation(p, 2))) ; if (v == 1, 1, factor(v)[1, 1]); \\ Michel Marcus, Aug 05 2021
    
  • Python
    from sympy import factorint, prime
    def A023578(n): return min((p for p in factorint(prime(n)+3) if p > 2), default=1) # Chai Wah Wu, Feb 03 2022

Formula

a(n) = A078701(A113935(n)). - Michel Marcus, Aug 05 2021
Previous Showing 11-20 of 25 results. Next