cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A090214 Generalized Stirling2 array S_{4,4}(n,k).

Original entry on oeis.org

1, 24, 96, 72, 16, 1, 576, 13824, 50688, 59904, 30024, 7200, 856, 48, 1, 13824, 1714176, 21606912, 76317696, 110160576, 78451200, 30645504, 6976512, 953424, 78400, 3760, 96, 1, 331776, 207028224, 8190885888, 74684104704, 253100173824
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The row length sequence for this array is [1,5,9,13,17,...] = A016813(n-1), n >= 1.
The g.f. for the k-th column, (with leading zeros and k >= 4) is G(k,x) = x^ceiling(k/4)*P(k,x)/Product_{p = 4..k} (1 - fallfac(p,4)*x), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := Sum_{m = 0..kmax(k)} A090221(k,m)*x^m, k >= 4, with kmax(k) := A057353(k-4)= floor(3*(k-4)/4). For the recurrence of the G(k,x) see A090221.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_4 (the disjoint union of n copies of the complete graph K_4). - Peter Bala, Aug 15 2013

Examples

			Table begins
n\k|   4      5      6      7      8     9   10   11   12
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
1  |   1
2  |  24     96     72     16      1
3  | 576  13824  50688  59904  30024  7200  856   48    1
...
		

Crossrefs

Cf. A090215, A071379 (row sums), A090213 (alternating row sums).
S_{1, 1} = A008277, S_{2, 1} = A008297 (ignoring signs), S_{3, 1} = A035342, S_{2, 2} = A078739, S_{3, 2} = A078740, S_{3, 3} = A078741.

Programs

  • Maple
    T:= (n,k) -> (-1)^k/k!*add((-1)^p*binomial(k,p)*(p*(p-1)*(p-2)*(p-3))^n,p=4..k):
    seq(seq(T(n,k),k=4..4*n),n=1..10); # Robert Israel, Jan 28 2016
  • Mathematica
    a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*FactorialPower[p, 4]^n, {p, 4, k}]; Table[a[n, k], {n, 1, 5}, {k, 4, 4*n}] // Flatten (* Jean-François Alcover, Sep 05 2012, updated Jan 28 2016 *)

Formula

a(n, k) = (-1)^k/k! * Sum_{p = 4..k} (-1)^p * binomial(k, p) * fallfac(p, 4)^n, with fallfac(p, 4) := A008279(p, 4) = p*(p - 1)*(p - 2)*(p - 3); 4 <= k <= 4*n, n >= 1, else 0. From eq.(19) with r = 4 of the Blasiak et al. reference.
E^n = Sum_{k = 4..4*n} a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator (x^4)*d^4/dx^4.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k >= 0} (k*(k - 1)*(k - 2)*(k - 3))^n*x^k/k!. - Peter Bala, Aug 15 2013

A299041 Irregular table: T(n,k) equals the number of alignments of length k of n strings each of length 3.

Original entry on oeis.org

1, 1, 12, 30, 20, 1, 60, 690, 2940, 5670, 5040, 1680, 1, 252, 8730, 103820, 581700, 1767360, 3087000, 3099600, 1663200, 369600, 1, 1020, 94890, 2615340, 32186070, 214628400, 859992000, 2189325600, 3628409400, 3903900000, 2630628000, 1009008000, 168168000, 1, 4092, 979530, 58061420, 1411122300
Offset: 1

Views

Author

Peter Bala, Feb 02 2018

Keywords

Comments

An alignment of n strings of various lengths is a way of inserting blank characters into the n strings so that the resulting strings all have the same length. We don't allow insertion of a blank character into the same position in each of the n strings.
In this case, let s_1,...,s_n be n strings each of length 3 over an alphabet A. Let - be a gap symbol not in A and let A' = union of A and {-}. An alignment of the n strings is an n-tuple (s_1',...,s_n') of strings each of length >= 3 over the alphabet A' such that
(a) the strings s_i', 1 <= i <= n, have the same length. This common length is called the length of the alignment.
(b) deleting the gap symbols from s_i' yields the string s_i for 1 <= i <= n
(c) there is no value j such that all the strings s_i', 1 <= i <= n have a gap symbol at position j.
By writing the strings s_i' one under another we can consider an alignment of n strings as an n X L matrix, where L, the length of the alignment, ranges from a minimum value of 3 to a maximum value of 3*n. Each row of the matrix has 3 characters from the alphabet A and (L - 3) gap characters.
For example,
s_1' = ABC------
s_2' = ---DEF---
s_3' = ------GHI
is an alignment (of maximum length L = 9) of three strings s_1 = ABC, s_2 = DEF and s_3 = GHI each of length 3.
For the number of alignments of length k of n strings of length 1 (resp. 2) see A131689 (resp. A122193).

Examples

			Table begins
n\k| 3   4     5       6      7      8        9      10
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
  1| 1
  2| 1  12    30      20
  3| 1  60   690    2940   5670    5040    1680
  4| 1 252  8730  103820 581700 1767360 3087000 3099600 ...
...
T(2,5) = 30: An alignment of length 5 will have two gap symbols on each line. There are C(5,2) = 10 ways of choosing the 2 positions to insert the gap symbols in the first string. The second string in the alignment must then have nongap symbols at these two positions leaving three positions in which to insert the remaining 1 nongap symbol, giving in total 10 x 3 = 30 possible alignments of 2 strings of 3 characters. Some examples are
  ABC--   ABC--   ABC--
  D--EF   -D-EF   --DEF
Row 2: Sum_{i = 3..n-1} C(i,3)^2 = C(n,4) + 12*C(n,5) + 30*C(n,6) + 20*C(n,7).
Row 3: Sum_{i = 3..n-1} C(i,3)^3 = C(n,4) + 60*C(n,5) + 690*C(n,6) + 2940*C(n,7) + 5670*C(n,8)+ 5040*C(n,9)+ 1680*C(n,10).
exp( Sum_{n >= 1} R(n,2)*x^n/n ) = (1 + x + 153*x^2 + 128793*x^3 + 319155321*x^4 + 1744213657689*x^5 + ....)^8
exp( Sum_{n >= 1} R(n,3)*x^n/n ) = (1 + x + 424*x^2 + 998584*x^3 + 6925040260*x^4 + 105920615923684*x^5 + ....)^27.
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i) *binomial(k,i)*binomial(i,3)^n, i = 0..k ), k = 3..3*n), n = 1..6);
  • Mathematica
    nmax = 6; T[n_, k_] := Sum[(-1)^(k-i) Binomial[k, i] Binomial[i, 3]^n, {i, 0, k}]; Table[T[n, k], {n, 1, nmax}, {k, 3, 3n}] // Flatten (* Jean-François Alcover, Feb 20 2018 *)

Formula

T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*binomial(i,3)^n.
T(n,3) = 1; T(n,3*n) = (3*n)!/6^n = A014606(n)
T(n,k) = binomial(k,3)*( T(n-1,k) + 3*T(n-1,k-1) + 3*T(n-1,k-2) + T(n-1,k-3) ) for 3 <= k <= 3*n with boundary conditions T(n,3) = 1 for n >= 1 and T(n,k) = 0 if (k < 3) or (k > 3*n).
Double e.g.f.: exp(-x)*Sum_{n >= 0} exp(binomial(n,3)*y)*x^n/n! = 1 + (x^3/3!)*y + (x^3/3! + 12*x^4/4! + 30*x^5/5! + 20*x^6/6!)*y^2/2! + ....
n-th row polynomial R(n,x) = Sum_{i >= 3} binomial(i,3)^n*x^i/(1 + x)^(i+1) for n >= 1.
1/(1 - x)*R(n,x/(1 - x)) = Sum_{i >= 3} binomial(i,3)^n*x^i for n >= 1.
R(n,x) = x^3 o x^3 o ... o x^3 (n factors), where o is the black diamond product of power series defined in Dukes and White.
R(n,x) = coefficient of (z_1)^3*...*(z_n)^3 in the expansion of the rational function 1/(1 + x - x*(1 + z_1)*...*(1 + z_n)).
The polynomials Sum_{k = 3..3*n} T(n,k)*x^(k-3)*(1 - x)^(3*n-k) are the row polynomials of A174266.
Sum_{i = 3..n-1} binomial(i,3)^m = Sum_{k = 3..3*m} T(m,k)*binomial(n,k+1) for m >= 1. See Examples below.
x^3*R(n,-1 - x) = (-1)^n*(1 + x)^3*R(n,x).
R(n+1,x) = 1/3!*x^3*(d/dx)^3 ((1 + x)^3*R(n,x)) for n >= 1.
The zeros of R(n,x) belong to the interval [-1, 0].
Row sums R(n,1) = A062208(n); alternating row sums R(n,-1) = (-1)^n.
For k a nonzero integer, the power series A(k,x) := exp( Sum_{n >= 1} 1/k^3*R(n,k)*x^n/n ) appear to have integer coefficients. See the Example section.
Sum_{k = 3..3*n} T(n,k)*binomial(x,k) = ( binomial(x,3) )^n. Equivalently, Sum_{k = 3..3*n} (-1)^(n+k)*T(n,k)*binomial(x+k,k) = ( binomial(x+3,3) )^n. Cf. the Worpitzky-type identity Sum_{k = 1..n} A019538(n,k)* binomial(x,k) = x^n.
Sum_{k = 3..3*n} T(n,k)*binomial(x,k-3) = -binomial(x,3)^n + 3*binomial(x+1,3)^n - 3*binomial(x+2,3)^n + binomial(x+3,3)^n. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane.

A262704 Triangle: Newton expansion of C(n,m)^3, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 6, 1, 0, 6, 24, 1, 0, 0, 114, 60, 1, 0, 0, 180, 690, 120, 1, 0, 0, 90, 2940, 2640, 210, 1, 0, 0, 0, 5670, 21840, 7770, 336, 1, 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1, 0, 0, 0, 1680, 189000, 735210, 407400, 42084, 720, 1, 0, 0, 0, 0, 224700, 2835756, 4280850, 1284360, 83880, 990, 1
Offset: 0

Views

Author

Giuliano Cabrele, Sep 27 2015

Keywords

Comments

Triangle here T_3(n,m) is such that C(n,m)^3 = Sum_{j=0..n} C(n,j)*T_3(j,m).
Equivalently, lower triangular matrix T_3 such that
|| C(n,m)^3 || = A181583 = P * T_3 = A007318 * T_3.
T_3(n,m) = 0 for n < m and for 3*m < n. In fact:
C(x,m)^q and C(x,m), with m nonnegative and q positive integer, are polynomial in x of degree m*q and m respectively, and C(x,m) is a divisor of C(x,m)^q.
Therefore the Newton series will give C(x,m)^q = T_q(m,m)*C(x,m) + T_q(m+1,m)*C(x,m+1) + ... + T_q(q*m,m)*C(x,q*m), where T_q(n,m) is the n-th forward finite difference of C(x,m)^q at x = 0.
Example:
C(x,2)^3 = x^3*(x-1)^3 / 8 = 1*C(x,2) + 24*C(x,3) + 114*C(x,4) + 180*C(x,5) + 90*C(x,6);
C(5,2)^3 = C(5,3)^3 = 1000 = 1*C(5,2) + 24*C(5,3) + 114*C(5,4) + 180*C(5,5) = 1*C(5,3) + 60*C(5,4) + 690*C(5,5).
So we get the expansion of the 3rd power of the binomial coefficient in terms of the binomial coefficients on the same row.
T_1 is the unitary matrix,
T_2 is the transpose of A109983,
T_3 is this sequence,
T_4, T_5 are A262705, A262706.

Examples

			Triangle starts:
n\m  [0]     [1]     [2]     [3]     [4]     [5]     [6]     [7]     [8]
[0]  1;
[1]  0,      1;
[2]  0,      6,      1;
[3]  0,      6,      24,     1;
[4]  0,      0,      114,    60,     1;
[5]  0,      0,      180,    690,    120,    1;
[6]  0,      0,      90,     2940,   2640,   210,    1;
[7]  0,      0,      0,      5670,   21840,  7770,   336,    1;
[8]  0,      0,      0,      5040,   87570,  107520, 19236,  504,    1;
[9]  ...
		

Crossrefs

Row sums are A172634, the inverse binomial transform of the Franel numbers (A000172).
Column sums are the A126086, per the comment given thereto by Brendan McKay.
Second diagonal (T_3(n+1,n)) is A007531 (n+2).
Column T_3(n,2) is A122193(3,n).
Cf. A109983 (transpose of), A262705, A262706.

Programs

  • Magma
    [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^3: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
    
  • Mathematica
    T3[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^3, {j, 0, n}]; Table[T3[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
  • MuPAD
    // as a function
    T_3:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^3 $ j=0..n):
    // as a matrix h x h
    _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
    _P_3:=h->matrix([[binomial(n,m)^3 $m=0..h]$n=0..h]):
    _T_3:=h->_P(h)^-1*_P_3(h):
    
  • PARI
    T_3(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^3), ", ")); print())} \\ Colin Barker, Oct 01 2015
    
  • PARI
    t3(n,m) = sum(j=0, n,  (-1)^((n-j)%2)* binomial(n,j)*binomial(j,m)^3);
    concat(vector(11, n, vector(n, k, t3(n-1,k-1)))) \\ Gheorghe Coserea, Jul 14 2016

Formula

T_3(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^3.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above,then T_3(n,m) = n! / (m!)^3 * S(m,m)(3,n).

A262705 Triangle: Newton expansion of C(n,m)^4, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 14, 1, 0, 36, 78, 1, 0, 24, 978, 252, 1, 0, 0, 4320, 8730, 620, 1, 0, 0, 8460, 103820, 46890, 1290, 1, 0, 0, 7560, 581700, 1159340, 185430, 2394, 1, 0, 0, 2520, 1767360, 13387570, 8314880, 595476, 4088, 1, 0, 0, 0, 3087000, 85806000, 170429490, 44341584, 1642788, 6552, 1
Offset: 0

Views

Author

Giuliano Cabrele, Sep 30 2015

Keywords

Comments

Triangle here T_4(n,m) is such that C(n,m)^4 = Sum_{j=0..n} C(n,j)*T_4(j,m).
Equivalently, lower triangular matrix T_4 such that
|| C(n,m)^4 || = A202750 = P * T_4 = A007318 * T_4.
T_4(n,m) = 0 for n < m and for 4*m < n.
Refer to comment to A262704.
Example:
C(x,2)^4 = x^4*(x-1)^4 /16 = 1*C(x,2) + 78*C(x,3) + 978*C(x,4) + 4320*C(x,5) + 8460*C(x,6) + 7560*C(x,7) + 2520*C(x,8);
C(5,2)^4 = C(5,3)^4 = 10000 = 1*C(5,2) + 78*C(5,3) + 978*C(5,4) + 4320*C(5,5) = 1*C(5,3) + 252*C(5,4) + 8730*C(5,5).

Examples

			Triangle starts:
[1];
[0,  1];
[0, 14,    1];
[0, 36,   78,      1];
[0, 24,  978,    252,     1];
[0,  0, 4320,   8730,   620,    1];
[0,  0, 8460, 103820, 46890, 1290, 1];
		

Crossrefs

Row sums are, by definition, the inverse binomial transform of A005260.
Second diagonal (T_4(n+1,n)) is A058895(n+1).
Column T_4(n,2) is A122193(4,n).
Cf. A109983 (transpose of), A262704, A262706.

Programs

  • Magma
    [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^4: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
    
  • Mathematica
    T4[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^4, {j, 0, n}]; Table[T4[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
  • MuPAD
    // as a function
    T_4:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^4 $ j=0..n):
    // as a matrix h x h
    _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
    _P_4:=h->matrix([[binomial(n,m)^4 $m=0..h]$n=0..h]):
    _T_4:=h->_P(h)^-1*_P_4(h):
    
  • PARI
    T_4(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^4), ", ")); print())} \\ Colin Barker, Oct 01 2015

Formula

T_4(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^4.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above, then T_4(n,m) = n! / (m!)^4 * S(m,m)(4,n).

A262706 Triangle: Newton expansion of C(n,m)^5, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 30, 1, 0, 150, 240, 1, 0, 240, 6810, 1020, 1, 0, 120, 63540, 94890, 3120, 1, 0, 0, 271170, 2615340, 740640, 7770, 1, 0, 0, 604800, 32186070, 47271840, 4029690, 16800, 1, 0, 0, 730800, 214628400, 1281612570, 518276640, 17075940, 32760, 1, 0, 0, 453600, 859992000, 18459063000, 26947757970, 4027831080, 60171300, 59040, 1
Offset: 0

Views

Author

Giuliano Cabrele, Sep 30 2015

Keywords

Comments

Triangle here T_5(n,m) is such that C(n,m)^5 = Sum_{j=0..n} C(n,j)*T_5(j,m).
Equivalently, lower triangular matrix T_5 such that
|| C(n,m)^5 || = P * T_5 = A007318 * T_5.
T_5(n,m) = 0 for n < m and for 5*m < n.
Refer to comment to A262704.
Example:
C(x,2)^5 = x^5*(x-1)^5/32 = 1*C(x,2) + 240*C(x,3) + 6810*C(x,4) + 63540*C(x,5) + 271170*C(x,6) + 604800*C(x,7) + 730800*C(x,8) + 453600*C(x,9) + 113400*C(x,10);
C(5,2)^5 = C(5,3)^5 = 100000 = 1*C(5,2) + 240*C(5,3) + 6810*C(5,4) + 63540*C(5,5) = 1*C(5,3) + 1020*C(5,4) + 94890*C(5,5).

Examples

			Triangle starts:
[1];
[0,   1];
[0,  30,      1];
[0, 150,    240,       1];
[0, 240,   6810,    1020,      1];
[0, 120,  63540,   94890,   3120,    1];
[0,   0, 271170, 2615340, 740640, 7770, 1];
		

Crossrefs

Second diagonal (T_5(n+1,n)) is A061167(n+1).
Column T_5(n,2) is A122193(5,n).
Cf. A109983 (transpose of), A262704, A262705.

Programs

  • Magma
    [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^5: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
    
  • Mathematica
    T5[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^5, {j, 0, n}]; Table[T5[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
  • MuPAD
    // as a function
    T_5:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^5 $ j=0..n):
    // as a matrix h x h
    _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
    _P_5:=h->matrix([[binomial(n,m)^5 $m=0..h]$n=0..h]):
    _T_5:=h->_P(h)^-1*_P_5(h):
    
  • PARI
    T_5(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^5), ", ")); print())} \\ Colin Barker, Oct 01 2015

Formula

T_5(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^5.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above, then T_5(n,m) = n! / (m!)^5 * S(m,m)(5,n).

A216379 Triangle of generalized Stirling numbers S_{n,n}(5,k) read by rows (n>=0, n<=k<=5n) the sum of which is A182924.

Original entry on oeis.org

1, 1, 15, 25, 10, 1, 16, 1280, 9080, 16944, 12052, 3840, 580, 40, 1, 1296, 330480, 6148872, 28245672, 49658508, 41392620, 18428400, 4691412, 706833, 63375, 3285, 90, 1, 331776, 207028224, 8190885888, 74684104704, 253100173824, 405044582400, 351783415296, 181005401088, 58436640576, 12288192000, 1721191680, 162115584, 10228144, 423360, 10960, 160, 1
Offset: 0

Views

Author

Jean-François Alcover, Sep 06 2012

Keywords

Examples

			{1},
{1,15,25,10,1},
{16,1280,9080,16944,12052,3840,580,40,1}
...
		

Crossrefs

Cf. A182924.
Second row (n=1) is 5th row of A008277 (Stirling numbers S2).
Third row is 5th row of A078739 (Generalized Stirling numbers S_{2,2}).
Fourth row is 5th row of A078741 (Generalized Stirling numbers S_{3,3}).
Fifth row is 5th row of A090214 (Generalized Stirling numbers S_{4,4}).

Programs

  • Mathematica
    f[m_][n_, k_] := (-1)^k/k!*Sum[(-1)^p*Binomial[k, p]*FactorialPower[p, m]^n, {p, m, k}]; Table[f[n][5, k],{n,0,4}, {k, n, 5*n}]//Flatten
Previous Showing 11-16 of 16 results.