A078962
Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,2,6).
Original entry on oeis.org
61, 2371, 5431, 11821, 21481, 37561, 50581, 69991, 124291, 126481, 139291, 223831, 230761, 268771, 272341, 275911, 305401, 363361, 365461, 388471, 498391, 516151, 556261, 561091, 585031, 752281, 776551, 783781, 812341, 832621, 911161, 942031, 950221, 1030021, 1108561
Offset: 1
61 is in the sequence since 61, 67 = 61 + 6, 71 = 61 + 10, 73 = 61 + 12 and 79 = 61 + 18 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {6,4,2,6} &][[;;, 1]] (* Amiram Eldar, Feb 22 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 4 && p4 - p3 == 2 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A078963
Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,6,2).
Original entry on oeis.org
3313, 4993, 5851, 9613, 17971, 23011, 32353, 36913, 45121, 51421, 53881, 54403, 59611, 76243, 90001, 91951, 127591, 130633, 131431, 134353, 140401, 142963, 174061, 229753, 246913, 267661, 303361, 311551, 321313, 340111, 386143, 435553, 465061, 514513, 532993, 618571
Offset: 1
23011 is in the sequence since 23011, 23017 = 23011 + 6, 23021 = 23011 + 10, 23027 = 23011 + 16 and 23029 = 23011 + 18 are consecutive primes.
-
L:= [2,3,5,7,11]:
count:= 0: Res:= NULL:
while count < 50 do
L:= [op(L[2..5]),nextprime(L[5])];
if L - [L[1]$5] = [0,6,10,16,18] then
count:= count+1;
Res:= Res, L[1];
fi
od:
Res; # Robert Israel, Jun 04 2018
-
Transpose[Select[Partition[Prime[Range[50000]],5,1],Differences[#]=={6,4,6,2}&]][[1]] (* Harvey P. Dale, Mar 04 2011 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A078964
Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,6,6).
Original entry on oeis.org
157, 4441, 6961, 8731, 14731, 16411, 16921, 20107, 25447, 39097, 47287, 47491, 60601, 78157, 78781, 84121, 92347, 104701, 114067, 115321, 128467, 142537, 183571, 186097, 194707, 196171, 253417, 279121, 286477, 297607, 307267, 327001, 350437, 351031, 354307, 357661
Offset: 1
157 is in the sequence since 157, 163 = 157 + 6, 167 = 157 + 10, 173 = 157 + 16 and 179 = 157 + 22 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {6,4,6,6} &][[;;, 1]] (* Amiram Eldar, Feb 22 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A078965
Primes p such that the differences between the 5 consecutive primes starting with p are (6,6,2,6).
Original entry on oeis.org
47, 257, 557, 587, 1217, 4007, 6257, 10847, 14537, 17477, 19457, 26717, 41597, 51407, 84047, 94427, 101267, 115757, 131927, 150077, 150197, 154067, 169307, 179807, 185057, 193367, 206807, 250037, 267887, 275147, 290027, 302567, 344237, 408197, 428027, 442817, 443147
Offset: 1
257 is in the sequence since 257, 263 = 257 + 6, 269 = 257 + 12, 271 = 257 + 14 and 277 = 257 + 20 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {6,6,2,6} &][[;;, 1]] (* Amiram Eldar, Feb 22 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 6 && p4 - p3 == 2 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A078966
Primes p such that the differences between the 5 consecutive primes starting with p are (6,6,4,2).
Original entry on oeis.org
601, 2671, 20341, 24091, 41941, 42391, 55201, 65701, 87541, 125101, 198811, 249421, 355501, 414691, 416401, 428551, 510061, 521161, 541531, 543871, 560221, 603901, 609601, 637711, 663961, 669661, 743161, 770041, 986131, 1020961, 1026661, 1099711, 1113181, 1120501
Offset: 1
601 is in the sequence since 601, 607 = 601 + 6, 613 = 601 + 12, 617 = 601 + 16 and 619 = 601 + 18 are consecutive primes.
-
Transpose[Select[Partition[Prime[Range[81000]],5,1],Differences[#] == {6,6,4,2}&]][[1]] (* Harvey P. Dale, Sep 15 2011 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 6 && p4 - p3 == 4 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A078967
Primes p such that the differences between the 5 consecutive primes starting with p are (6,6,4,6).
Original entry on oeis.org
151, 367, 3307, 4987, 20101, 30097, 52951, 53617, 85831, 92221, 95701, 99817, 103561, 128461, 135601, 163621, 214651, 221071, 241321, 241861, 246907, 274831, 280591, 282691, 287851, 294787, 295831, 297601, 307261, 308311, 334771, 340897, 347161, 350431, 354301
Offset: 1
151 is in the sequence since 151, 157 = 151 + 6, 163 = 151 + 12, 167 = 151 + 16 and 173 = 151 + 22 are consecutive primes.
-
Transpose[Select[Partition[Prime[Range[30000]],5,1],Differences[#] == {6,6,4,6}&]][[1]] (* Harvey P. Dale, Apr 06 2012 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 6 && p4 - p3 == 4 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A078968
Primes p such that the differences between the 5 consecutive primes starting with p are (6,6,6,2).
Original entry on oeis.org
251, 17471, 56081, 75521, 94421, 115751, 121001, 154061, 163841, 179801, 185051, 250031, 344231, 351041, 380441, 417941, 517061, 683681, 703211, 713171, 783131, 849581, 916451, 983771, 1003091, 1025261, 1055591, 1070411, 1115561, 1129841, 1260881, 1517921, 1565171
Offset: 1
251 is in the sequence since 251, 257 = 251 + 6, 263 = 251 + 12, 269 = 251 + 18 and 271 = 251 + 20 are consecutive primes.
-
Select[Partition[Prime[Range[150000]], 5, 1], Differences[#] == {6,6,6,2} &][[;;, 1]] (* Amiram Eldar, Feb 22 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A079017
Suppose p and q = p+14 are primes. Define the difference pattern of (p,q) to be the successive differences of the primes in the range p to q. There are 15 possible difference patterns, namely [14], [2,12], [6,8], [8,6], [12,2], [2,4,8], [2,6,6], [2,10,2], [6,2,6], [6,6,2], [8,4,2], [2,4,6,2], [2,6,4,2], [2,2,4,2,4], [2,4,2,4,2]. Sequence gives smallest value of p for each difference pattern, sorted by magnitude.
Original entry on oeis.org
3, 5, 17, 23, 29, 47, 83, 89, 113, 137, 149, 197, 359, 509, 1997
Offset: 1
p=1997, q=2011 has difference pattern [2,4,8] and {1997,1999,2003,2011} is the corresponding consecutive prime 4-tuple.
A078960
Primes p such that the differences between the 5 consecutive primes starting with p are (6,2,6,6).
Original entry on oeis.org
593, 4643, 6353, 11483, 19463, 34253, 71333, 77543, 89513, 101273, 135593, 148853, 179813, 184823, 191453, 193373, 245513, 260003, 267893, 277883, 280583, 302573, 307253, 308303, 310223, 344243, 346433, 350423, 376463, 408203, 416393, 435563, 442823, 450473, 482393
Offset: 1
593 is in the sequence since 593, 599 = 593 + 6, 601 = 593 + 8, 607 = 593 + 14 and 613 = 593 + 20 are consecutive primes.
-
Transpose[Select[Partition[Prime[Range[36000]],5,1],Differences[#]=={6,2,6,6}&]][[1]] (* Harvey P. Dale, Oct 14 2013 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 2 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A342502
Gaps between first elements of prime quintuples of the form (p, p+2, p+6, p+12, p+14). The quintuples are abutting: twin/cousin/sexy/twin pairs.
Original entry on oeis.org
12, 210, 1050, 330, 1920, 390, 720, 150, 22950, 10710, 780, 5040, 27060, 26040, 2340, 13440, 8880, 360, 1950, 41370, 17790, 3630, 4320, 6510, 870, 76620, 15210, 21540, 5760, 29100, 2340, 66990, 1950, 3360, 5370, 16800, 6930, 40530, 4230, 3570, 15510, 10320
Offset: 1
The first 4 terms of the sequence are 12, 210, 1050, 330, since the gaps between first elements of the first five quintuples {5,7,11,17,19}, {17,19,23,29,31}, {227,229,233,239,241}, {1277,1279,1283,1289,1291}, {1607,1609,1613,1619,1621} are, 17-5=12, 227-17=210, etc.
-
b:= proc(n) option remember; local p; p:= `if`(n=1, 1, b(n-1));
do p:= nextprime(p);
if andmap(isprime, [p+2, p+6, p+12, p+14]) then return p fi
od
end:
a:= n-> b(n+1)-b(n):
seq(a(n), n=1..65); # Alois P. Heinz, Mar 14 2021
-
b[n_] := b[n] = Module[{p}, p = If[n == 1, 1, b[n-1]]; While[True, p = NextPrime[p]; If[AllTrue[{p+2, p+6, p+12, p+14}, PrimeQ], Return[p]]]];
a[n_] := b[n+1]-b[n];
Table[a[n], {n, 1, 65}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
Comments