cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A318608 Moebius function mu(n) defined for the Gaussian integers.

Original entry on oeis.org

1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0
Offset: 1

Views

Author

Jianing Song, Aug 30 2018

Keywords

Comments

Just like the original Moebius function over the integers, a(n) = 0 if n has a squared Gaussian prime factor, otherwise (-1)^t if n is a product of a Gaussian unit and t distinct Gaussian prime factors.
a(n) = 0 for even n since 2 = -i*(1 + i)^2 contains a squared factor. For rational primes p == 1 (mod 4), p is always factored as (x + y*i)(x - y*i), x + y*i and x - y*i are not associated so a(p) = (-1)*(-1) = 1.
Interestingly, a(n) and A091069(n) have the same absolute value (= |A087003(n)|), since the discriminants of the quadratic fields Q[i] and Q[sqrt(2)] are -4 and 8 respectively, resulting in Q[i] and Q[sqrt(2)] being two of the three quadratic fields with discriminant a power of 2 or negated (the other one being Q[sqrt(-2)] with discriminant -8).

Examples

			a(15) = -1 because 15 is factored as 3*(2 + i)*(2 - i) with three distinct Gaussian prime factors.
a(21) = (-1)*(-1) = 1 because 21 = 3*7 where 3 and 7 are congruent to 3 mod 4 (thus being Gaussian primes).
		

Crossrefs

Absolute values are the same as those of A087003.
First row and column of A103226.
Cf. A101455.
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), this sequence ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319448.
Cf. A091069 (Moebius function over Z[sqrt(2)]).

Programs

  • Mathematica
    f[p_, e_] := If[p == 2 || e > 1, 0, Switch[Mod[p, 4], 1, 1, 3, -1]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2||e>=2, r=0);
            if(Mod(p,4)==3&e==1, r*=-1);
        );
        return(r);
    }

Formula

a(n) = 0 if n even or has a square prime factor, otherwise Product_{p divides n} (2 - (p mod 4)) where the product is taken over the primes.
Multiplicative with a(p^e) = 0 if p = 2 or e > 1, a(p) = 1 if p == 1 (mod 4) and -1 if p == 3 (mod 4).
a(n) = 0 if A078458(n) != A086275(n), otherwise (-1)^A086275(n).
a(n) = A103226(n,0) = A103226(0,n).
For squarefree n, a(n) = Kronecker symbol (-4, n) = A101455(n). Also for these n, a(n) = A091069(n) if n even or n == 1 (mod 8), otherwise -A091069(n).

A239442 a(n) = phi(n^7).

Original entry on oeis.org

1, 64, 1458, 8192, 62500, 93312, 705894, 1048576, 3188646, 4000000, 17715610, 11943936, 57921708, 45177216, 91125000, 134217728, 386201104, 204073344, 846825858, 512000000, 1029193452, 1133799040, 3256789558, 1528823808, 4882812500, 3706989312, 6973568802, 5782683648, 16655052988
Offset: 1

Views

Author

Keywords

Comments

Number of solutions of the equation gcd(x_1^2 + ... + x_7^2, n)=1 with 0 < x_i <= n.

Crossrefs

Defining Phi_k(n):= number of solutions of the equation gcd(x_1^2 + ... + x_k^2, n) = 1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010.
Phi_2(n) = A079458.
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191.
Phi_4(n) = A227499.
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533.
Phi_6(n) = A238534.
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442.
Phi_8(n) = A239441.
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443.

Programs

Formula

a(n) = n^6*phi(n).
Dirichlet g.f.: zeta(s - 7) / zeta(s - 6). The n-th term of the Dirichlet inverse is n^6 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - Álvar Ibeas, Nov 24 2017
Sum_{k=1..n} a(k) ~ 3*n^8 / (4*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^8 - p^7 - p + 1)) = 1.01646280485545934937... - Amiram Eldar, Dec 06 2020

A239443 a(n) = phi(n^9), where phi = A000010.

Original entry on oeis.org

1, 256, 13122, 131072, 1562500, 3359232, 34588806, 67108864, 258280326, 400000000, 2143588810, 1719926784, 9788768652, 8854734336, 20503125000, 34359738368, 111612119056, 66119763456, 305704134738, 204800000000, 453874312332, 548758735360, 1722841676182, 880602513408, 3051757812500
Offset: 1

Views

Author

Keywords

Comments

Number of solutions of the equation GCD(x_1^2 + ... + x_9^2,n)=1 with 0 < x_i <= n.
In general, for m>0, Sum_{k=1..n} phi(k^m) ~ 6 * n^(m+1) / ((m+1)*Pi^2). - Vaclav Kotesovec, Feb 02 2019

Crossrefs

Defining Phi_k(n):= number of solutions of the equation GCD(x_1^2 + ... + x_k^2,n)=1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010(n).
Phi_2(n) = A079458(n).
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191(n).
Phi_4(n) = A227499(n).
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533(n).
Phi_6(n) = A238534(n).
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442(n).
Phi_8(n) = A239441(n).
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443(n).

Programs

Formula

Dirichlet g.f.: zeta(s - 9) / zeta(s - 8). The n-th term of the Dirichlet inverse is n^8 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221. - Álvar Ibeas, Nov 24 2017
a(n) = n^8 * phi(n). - Altug Alkan, Mar 10 2018
Sum_{k=1..n} a(k) ~ 3*n^10 / (5*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^10 - p^9 - p + 1)) = 1.00399107654133714629... - Amiram Eldar, Dec 06 2020

A239441 Number of invertible octonions over Z/nZ.

Original entry on oeis.org

1, 128, 4320, 32768, 312000, 552960, 4939200, 8388608, 28343520, 39936000, 194858400, 141557760, 752955840, 632217600, 1347840000, 2147483648, 6565340160, 3627970560, 16089567840, 10223616000, 21337344000, 24941875200, 74905892160, 36238786560, 121875000000, 96378347520
Offset: 1

Views

Author

Keywords

Comments

Number of octonions over Z/nZ with invertible norm; i.e., number of solutions of the equation gcd(x_1^2 + ... + x_8^2, n)=1 with 0 < x_i <= n.

Crossrefs

Sequences giving the number of solutions to the equation gcd(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).

Programs

  • Mathematica
    fa=FactorInteger;lon[n_]:=Length[fa[n]];Phi[k_, n_] := Which[Mod[k, 2] == 1, n^(k - 1)*EulerPhi[n], Mod[k, 4] ==0, n^(k - 1)*EulerPhi[n]*Product[1 - 1/fa[2n][[i, 1]]^(k/2), {i, 2, lon[2 n]}],True, n^(k - 1)*EulerPhi[n]*Product[Which[ Mod[fa[ n][[i, 1]], 4] == 3 , 1 + 1/fa[ n][[i, 1]]^(k/2), Mod[fa[ n][[i, 1]], 4] == 1, 1 - 1/fa[ n][[i, 1]]^(k/2), True, 1], {i, 1, lon[ n]}]]; Table[Phi[8,n],{n,1,100}]
    f[p_, e_] := (p-1)*p^(8*e-1) * If[p == 2, 1, 1 - 1/p^4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Feb 13 2024 *)
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^8)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)))} \\ Andrew Howroyd, Aug 06 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 2^(8*e-1), (p - 1)*p^(8*e - 5)*(p^4 - 1)))} \\ Andrew Howroyd, Aug 06 2018

Formula

Multiplicative with a(2^e) = 2^(8*e-1), a(p^e) = (p - 1)*p^(8*e - 5)*(p^4 - 1) for odd prime p. - Andrew Howroyd, Aug 06 2018
Sum_{k=1..n} a(k) ~ c * n^9, where c = (16/141) * Product_{p prime} (1 - 1/p^2 - 1/p^5 + 1/p^6) = 0.06731687367... . - Amiram Eldar, Nov 30 2022
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-8) * (1 - 1/2^(s-7)) * Product_{p prime > 2} (1 - 1/p^(s-7) - (p-1)/p^(s-3)).
Sum_{n>=1} 1/a(n) = (257*Pi^14/1312151400) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^9 + 1/p^10 + 1/p^12 - 1/p^14) = 1.00807991170717322545... . (End)

A239611 a(n) = Sum_{0 < x,y <= n and gcd(x^2 + y^2, n)=1} gcd(x^2 + y^2 - 1, n).

Original entry on oeis.org

1, 4, 16, 32, 32, 64, 96, 192, 216, 128, 240, 512, 288, 384, 512, 1024, 512, 864, 720, 1024, 1536, 960, 1056, 3072, 1200, 1152, 2592, 3072, 1568, 2048, 1920, 5120, 3840, 2048, 3072, 6912, 2592, 2880, 4608, 6144, 3200, 6144, 3696, 7680, 6912, 4224, 4416
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative by the Chinese remainder theorem since gcd(x, m*n) = gcd(x, m)*gcd(x, n) for gcd(m, n) = 1. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    g2[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}]; Array[g2,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, if (gcd(x^2+y^2,n) == 1, s += gcd(x^2+y^2-1,n)););); s;} \\ Michel Marcus, Jun 29 2014

A239612 a(n) = Sum_{0 < x,y,z <= n and gcd(x^2 + y^2 + z^2, n)=1} gcd(x^2 + y^2 + z^2 - 1, n).

Original entry on oeis.org

1, 8, 30, 112, 220, 240, 546, 1280, 1134, 1760, 2310, 3360, 4212, 4368, 6600, 13312, 9520, 9072, 12654, 24640, 16380, 18480, 22770, 38400, 42500, 33696, 39366, 61152, 47908, 52800, 56730, 131072, 69300, 76160, 120120, 127008, 99900, 101232, 126360, 281600
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

Crossrefs

Programs

  • Mathematica
    g3[n_] := Sum[If[GCD[x^2 + y^2 + z^2, n] == 1, GCD[x^2 + y^2 + z^2 - 1, n], 0],{x, 1, n},{y, 1, n},{z,1,n}]; Array[g3,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, for (z=1, n, if (gcd(x^2+y^2+z^2,n) == 1, s += gcd(x^2+y^2+z^2-1,n));););); s;} \\ Michel Marcus, Jun 29 2014
    
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^3)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))} \\ Andrew Howroyd, Aug 07 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 07 2018

A239613 a(n) = Sum_{0 < x,y,z,t <= n and gcd(x^2 + y^2 + z^2 + t^2, n)=1} gcd(x^2 + y^2 + z^2 + t^2 - 1, n).

Original entry on oeis.org

1, 16, 96, 384, 960, 1536, 4032, 8192, 11664, 15360, 26400, 36864, 52416, 64512, 92160, 163840, 156672, 186624, 246240, 368640, 387072, 422400, 534336, 786432, 900000, 838656, 1259712, 1548288, 1364160, 1474560, 1785600, 3145728
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

Crossrefs

Programs

  • Mathematica
    g4[n_] := Sum[If[GCD[x^2 + y^2+ z^2+ t^2, n] == 1, GCD[x^2 + y^2+ z^2+ t^2 - 1, n], 0], {x, 1, n}, {y, 1, n},{z,1,n},{t,1,n}]; Array[g4,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, for (z=1, n, for (t=1, n, if (gcd(x^2+y^2+z^2+t^2,n) == 1, s += gcd(x^2+y^2+z^2+t^2-1,n)););););); s;} \\ Michel Marcus, Jun 29 2014
    
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^4)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))} \\ Andrew Howroyd, Aug 07 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 07 2018

A239615 a(n) = n * A239612(n) / A053191(n).

Original entry on oeis.org

1, 4, 5, 14, 11, 20, 13, 40, 21, 44, 21, 70, 27, 52, 55, 104, 35, 84, 37, 154, 65, 84, 45, 200, 85, 108, 81, 182, 59, 220, 61, 256, 105, 140, 143, 294, 75, 148, 135, 440, 83, 260, 85, 294, 231, 180, 93, 520, 133, 340, 175, 378, 107, 324, 231, 520, 185, 236
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative because both A239612 and A053191 are. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Boole[GCD[x^2 + y^2 + z^2, n] == 1] GCD[x^2 + y^2 + z^2 - 1, n], {x, 1, n}, {y, 1, n}, {z, 1, n}]/(n EulerPhi[n]);
    Array[a, 60] (* Jean-François Alcover, Nov 22 2018 *)
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^3)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))/(n * eulerphi(n))} \\ Andrew Howroyd, Aug 07 2018

A316506 a(n) is the rank of the multiplicative group of Gaussian integers modulo n.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 1, 3, 2, 2, 3, 3, 2, 2, 1, 4, 2, 2, 1, 4, 2, 3, 2, 3, 2, 4, 1, 3, 2, 3, 3, 3, 2, 2, 3, 5, 2, 3, 1, 3, 3, 2, 1, 4, 2, 3, 3, 4, 2, 2, 3, 4, 2, 3, 1, 5, 2, 2, 3, 3, 4, 3, 1, 4, 2, 4, 1, 4, 2, 3, 3, 3, 2, 4, 1, 5, 2, 3, 1, 4, 4, 2, 3
Offset: 1

Views

Author

Jianing Song, Jul 05 2018

Keywords

Comments

The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G.
Let p be an odd prime and (Z[i]/nZ[i])* be the multiplicative group of Gaussian integers modulo n, then: (Z[i]/p^e*Z[i])* = (C_((p-1)*p^(e-1)))^2 if p == 1 (mod 4); C_(p^(e-1)) X C_(p^(e-1)*(p^2-1)) if p == 3 (mod 4). (Z[i]/2Z[i])* = C_2, (Z[i]/2^e*Z[i])* = C_4 X C_(2^(e-2)) X C_(2^(e-1)) for e >= 2. If n = Product_{i=1..k} (p_i)^(e_i), then (Z[i]/nZ[i])* = (Z[i]/(p_1)^(e_1)*Z[i])* X (Z[i]/(p_2)^(e_2)*Z[i])* X ... X (Z[i]/(p_k)^(e_k)*Z[i])*.
The order of (Z[i]/nZ[i])* is A079458(n) and the exponent of it is A227334(n).
{a(n)} is not additive: (Z[i]/2Z[i])* = C_2, (Z[i]/9Z[i])* = C_3 X C_24, so (Z[i]/18Z[i])* = C_6 X C_24, a(18) < a(2) + a(9). The same problem occurs for a(36), a(54) and a(72) and so on. But note that (Z[i]/63Z[i])* = C_3 X C_24 X C_48 and a(63) = a(7) + a(9).
A079458(n)/A227334(n) is always an integer, and is 1 if and only if (Z[i]/nZ[i])* is cyclic, that is, rank((Z[i]/nZ[i])*) = a(n) = 0 or 1, and n has a primitive root in (Z[i]/nZ[i])*. a(n) = 1 if and only if n = 2 or a prime congruent to 3 mod 4. - Jianing Song, Jan 08 2019
From Jianing Song, Oct 03 2022: (Start)
More generally, let pi be a prime element of Z[i] of norm p or p^2 for prime p, then:
- for p == 1 (mod 4), (Z[i]/(pi^e)Z[i])* = C_((p-1)*p^(e-1));
- for p == 3 (mod 4), (Z[i]/(pi^e)Z[i])* = C_(p^(e-1)) X C_(p^(e-1)*(p^2-1));
- for p = 2, (Z[i]/(pi^e)Z[i])* = C_1 for e = 1, C_2 for e = 2, C_4 X C_(2^floor((e-3)/2)) X C_(2^ceiling((e-3)/2)) for e >= 3.
For a more general result see my link below. (End)

Examples

			(Z[i]/1Z[i])* = C_1 (has rank 0);
(Z[i]/2Z[i])* = C_2 (has rank 1);
(Z[i]/3Z[i])* = C_8 (has rank 1);
(Z[i]/4Z[i])* = C_2 X C_4 (has rank 2);
(Z[i]/5Z[i])* = C_4 X C_4 (has rank 2);
(Z[i]/6Z[i])* = C_2 X C_8 (has rank 2);
(Z[i]/7Z[i])* = C_48 (has rank 1);
(Z[i]/8Z[i])* = C_2 X C_4 X C_4 (has rank 3);
(Z[i]/9Z[i])* = C_3 X C_24 (has rank 2);
(Z[i]/10Z[i])* = C_2 X C_4 X C_4 (has rank 3).
		

Crossrefs

Equivalent in the ring of Eisenstein integers: A319447.

Programs

  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    grad(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&e==1, r*=2);
            if(p==2&e==2, r*=4);
            if(p==2&e>=3, r*=8);
            if(p%4==1, r*=(rad(p-1))^2);
            if(p%4==3&e==1, r*=rad(p^2-1));
            if(p%4==3&e>=2, r*=p^2*rad(p^2-1));
        );
        return(r);
    }
    a(n)=if(n>1, vecmax(factor(grad(n))[, 2]), 0);

Formula

Let p be an odd prime, then: a(p^e) = 2 if p == 1 (mod 4) or p == 3 (mod 4), e >= 2; a(p) = 1 if p == 3 (mod 4). a(2) = 1, a(4) = 2, a(2^e) = 3 for e >= 3.

A082953 a(n) = A000252(n) / A070732(n).

Original entry on oeis.org

1, 2, 4, 8, 16, 8, 36, 32, 36, 32, 100, 32, 144, 72, 64, 128, 256, 72, 324, 128, 144, 200, 484, 128, 400, 288, 324, 288, 784, 128, 900, 512, 400, 512, 576, 288, 1296, 648, 576, 512, 1600, 288, 1764, 800, 576, 968, 2116
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), May 26 2003

Keywords

Comments

From Jianing Song, Apr 20 2019: (Start)
a(n) is the number of split complex numbers z = x + yj in a reduced system modulo n where x, y are integers, j^2 = 1; number of solutions to gcd(x^2 - y^2, n)=1 with x, y in [0, n-1].
a(n) is the number of invertible elements in the ring Z_n[x]/(x^2 - 1) with discriminant d = 4, where Z_n is the ring of integers modulo n. (End)

Crossrefs

Similar sequences: A127473 (size of (Z_n[x]/(x^2 - x))*, d = 1), A002618 ((Z_n[x]/(x^2))*, d = 0), A079458 ((Z_n[x]/(x^2 + 1))*, d = -4), A319445 ((Z_n[x]/(x^2 - x + 1))* or (Z_n[x]/(x^2 + x + 1))*, d = -3).

Programs

  • Maple
    A082953 := proc(n) numtheory[phi](n)*numtheory[phi](2*n) ; end proc:
    seq(A082953(n),n=1..100) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    Array[Times @@ Map[EulerPhi, {#, 2 #}] &, 47] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    a(n) = eulerphi(n)*eulerphi(2*n); \\ Michel Marcus, Jun 04 2025

Formula

a(n) = phi(n)*phi(2*n) = A000010(n)*A062570(n). - Vladeta Jovovic, May 02 2005
Multiplicative with a(2^e) = 2^(2e-1) and a(p^e) = (p-1)^2*p^(2e-2) for p > 2. - R. J. Mathar, Apr 14 2011
a(n) = phi(n)^2 if n odd; 2*phi(n)^2 if n even, where phi(n) = A000010(n). - Jianing Song, Apr 20 2019
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/5) * Product_{p prime} (1 - (2*p-1)/p^3) = (2/5) * A065464 = 0.171299... . - Amiram Eldar, Oct 30 2022
a(n) = gcd(n,2)*phi(n)^2 = A040001(n)*A127473(n). - Ridouane Oudra, Jun 04 2025
Previous Showing 11-20 of 25 results. Next