cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A350638 Numbers of the form p^2*q, with odd primes p > q, such that q divides p-1.

Original entry on oeis.org

147, 507, 605, 1083, 2883, 4107, 4805, 5547, 5819, 5887, 8405, 11163, 12943, 13467, 15987, 18605, 18723, 25205, 28227, 31827, 35287, 35643, 36517, 48387, 49379, 50807, 51005, 57963, 68403, 73947, 79707, 81133, 85805, 87131, 89383, 98283, 100949, 111747, 112903
Offset: 1

Views

Author

Bernard Schott, Jan 10 2022

Keywords

Comments

For these terms m there are precisely (q+9)/2 groups of order m.
Only two of these groups are abelian: C_{p^2*q} and (C_p X C_p) X C_q. The (q+5)/2 groups that are nonabelian are C_{p^2} : C_q and the (q+3)/2 semidirect products of the form (C_p X C_p) : C_q that are not isomorphic, where C means cyclic groups of the stated order, the symbols X and : mean direct and semidirect products respectively.

Examples

			147 = 7^2 * 3, 3 and 7 are odd primes, 3 divides 7-1 = 6, hence 147 is a term.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115, A350245, A350332, A350421, A350422.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {1, 2} && Divisible[p[[2]] - 1, p[[1]]]]; Select[Range[1, 120000, 2], q] (* Amiram Eldar, Jan 11 2022 *)
  • PARI
    isok(m) = if (m%2, my(f=factor(m)); if (f[, 2] == [1, 2]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p) == 0)); \\ Michel Marcus, Jan 11 2022
  • Python
    from sympy import integer_nthroot, primerange
    def aupto(limit):
        aset, maxp = set(), integer_nthroot(limit**2, 3)[0]
        for p in primerange(5, maxp+1):
            pp = p*p
            for q in primerange(3, min(p, limit//pp+1)):
                if (p-1)%q == 0:
                    aset.add(pp*q)
        return sorted(aset)
    print(aupto(113000)) # Michael S. Branicky, Jan 10 2022
    

Extensions

More terms from Michael S. Branicky, Jan 10 2022

A179262 a(n) = 2*prime(n)^2 - 1.

Original entry on oeis.org

7, 17, 49, 97, 241, 337, 577, 721, 1057, 1681, 1921, 2737, 3361, 3697, 4417, 5617, 6961, 7441, 8977, 10081, 10657, 12481, 13777, 15841, 18817, 20401, 21217, 22897, 23761, 25537, 32257, 34321, 37537, 38641, 44401, 45601, 49297, 53137, 55777
Offset: 1

Views

Author

Frank Wals (frank.wals(AT)gmail.com), Jul 06 2010, Jul 09 2010

Keywords

Crossrefs

Cf. A000040.

Programs

Formula

a(n) = A079704(n) - 1 = 2*prime(n)^2 - 1. - R. J. Mathar, Jul 08 2010

Extensions

More terms from R. J. Mathar, Jul 08 2010

A255586 Composite k such that Sum_{i=1..t-1} d(i+1)/d(i) is an integer, where d(1), ..., d(t) are the divisors of k in ascending order.

Original entry on oeis.org

4, 8, 9, 16, 18, 25, 27, 32, 48, 49, 50, 64, 81, 98, 108, 121, 125, 128, 162, 169, 242, 243, 256, 289, 338, 343, 361, 375, 512, 529, 578, 625, 722, 729, 841, 961, 1024, 1029, 1058, 1250, 1331, 1369, 1458, 1681, 1682, 1849, 1920, 1922, 2048, 2187, 2197, 2209
Offset: 1

Views

Author

Michel Lagneau, Feb 27 2015

Keywords

Comments

The sequence is infinite because the powers of 2 (A000079) are in the sequence.
The prime powers with even exponents (A056798) are in the sequence.
The cubes of primes (A030078) are in the sequence.
The numbers of the form 2p^2 (A079704) with p prime are in the sequence.
The corresponding integers are 4, 6, 6, 8, 9, 10, 9, 10, 14, 14, 11, 12, 12, 13, 17, 22, 15, 14, 16, 26, 17, 15, 16, 34, 19, ...

Examples

			18 is in the sequence because the divisors of 18 are {1, 2, 3, 6, 9, 18} and 2/1 + 3/2 + 6/3 + 9/6 + 18/9 = 9 is an integer.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[s=0;Do[s=s+Divisors[n][[i+1]]/Divisors[n][[i]],{i,1,Length[Divisors[n]]-1}];If[IntegerQ[s]&&!PrimeQ[n],AppendTo[lst,n]],{n,2300}];lst
    Select[Range[2210],CompositeQ[#]&&IntegerQ[Total[#[[2]]/#[[1]]&/@Partition[ Divisors[ #],2,1]]]&] (* Harvey P. Dale, Jul 09 2019 *)

A153480 a(n) = 2*prime(n)^2 - 4.

Original entry on oeis.org

4, 14, 46, 94, 238, 334, 574, 718, 1054, 1678, 1918, 2734, 3358, 3694, 4414, 5614, 6958, 7438, 8974, 10078, 10654, 12478, 13774, 15838, 18814, 20398, 21214, 22894, 23758, 25534, 32254, 34318, 37534, 38638, 44398, 45598, 49294, 53134, 55774
Offset: 0

Views

Author

Roger L. Bagula, Dec 27 2008

Keywords

Crossrefs

Programs

  • Magma
    [2*NthPrime(n)^2-4: n in [1..40]]; // Vincenzo Librandi, Aug 19 2016
  • Mathematica
    Clear[a, k]; a[k_] := 2*Prime[k]^2 - 4; Table[a[k], {k, 1, 30}]
    2*Prime[Range[25]]^2 - 4 (* G. C. Greubel, Aug 18 2016 *)
    Table[2 Prime[n]^2 - 4, {n, 60}] (* Vincenzo Librandi, Aug 19 2016 *)

Formula

a(n) = A079704(n)-4 = 2*A049001(n). - R. J. Mathar, Jan 03 2009

Extensions

Extended by R. J. Mathar, Jan 03 2009

A349546 Composite numbers k such that k+1 is divisible by (k+1 mod A001414(k)) and k-1 is divisible by (k-1 mod A001414(k)).

Original entry on oeis.org

4, 8, 20, 32, 50, 55, 64, 77, 80, 98, 110, 115, 125, 128, 152, 170, 216, 242, 243, 256, 275, 290, 329, 338, 341, 343, 364, 371, 416, 506, 511, 512, 544, 551, 578, 583, 611, 638, 663, 722, 729, 731, 741, 851, 870, 920, 987, 1024, 1025, 1054, 1058, 1079, 1144, 1219, 1243, 1298, 1325, 1331, 1421
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 21 2021

Keywords

Examples

			a(3) = 20 is a term because A001414(20) = 2+2+5 = 9, 20+1 = 21 is divisible by 21 mod 9 = 3, and 20-1 = 19 is divisible by 19 mod 9 = 1.
		

Crossrefs

Cf. A001414.
Includes all members of A079704 except 18.

Programs

  • Maple
    filter:= proc(n) local s, t,r,q;
      if isprime(n) then return false fi;
      s:= add(t[1]*t[2],t = ifactors(n)[2]);
      r:= (n+1) mod s;
      q:= (n-1) mod s;
      r<> 0 and q <> 0 and (n+1) mod r = 0 and (n-1) mod q = 0
    end proc:
    select(filter, [$4..2000]);
  • Mathematica
    filter[n_] := Module[{s, t, r, q},
       If[ PrimeQ[n], Return[False]];
       s = Sum[t[[1]]*t[[2]], {t, FactorInteger[n]}];
       r = Mod[n+1, s];
       q = Mod[n-1, s];
       r != 0 && q != 0 && Mod[n+1, r] == 0 && Mod[n-1, q ] == 0];
    Select[Range[4, 2000], filter] (* Jean-François Alcover, Sep 29 2024, after Maple program *)

A352081 Numbers of the form k*p^k, where k>1 and p is a prime.

Original entry on oeis.org

8, 18, 24, 50, 64, 81, 98, 160, 242, 324, 338, 375, 384, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2048, 2500, 2738, 3362, 3698, 3993, 4374, 4418, 4608, 5618, 6591, 6962, 7442, 8978, 9604, 10082, 10240, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1

Views

Author

Amiram Eldar, Apr 16 2022

Keywords

Comments

Each term in this sequence has a single presentation in the form k*p^k.

Examples

			8 is a term since 8 = 2*2^2.
18 is a term since 18 = 2*3^2.
24 is a term since 24 = 3*2^3.
		

Crossrefs

Subsequences: A036289 \ {0, 2}, A036290 \ {0, 3}, A036291 \ {0, 5}, A036293 \ {0, 7}, A073113 \ {2}, A079704, A100042, A104126.

Programs

  • Mathematica
    addP[p_, n_] := Module[{k = 2, s = {}, m}, While[(m = k*p^k) <= n, k++; AppendTo[s, m]]; s]; seq[max_] := Module[{m = Floor[Sqrt[max/2]], s = {}, ps}, ps = Select[Range[m], PrimeQ]; Do[s = Join[s, addP[p, max]], {p, ps}]; Sort[s]]; seq[2*10^4]

Formula

Sum_{n>=1} 1/a(n) = -A143524 = gamma - B_1, where gamma is Euler's constant (A001620), and B_1 is Mertens's constant (A077761).

A164986 Numbers of the form 2p^2 = q^2 + 1, where p and q are primes.

Original entry on oeis.org

50, 1682, 3971273138702695316402, 367680737852094722224630791187352516632102802
Offset: 1

Views

Author

Rick L. Shepherd, Sep 03 2009

Keywords

Comments

A079704 INTERSECT A002522. Subsequence of A088920 (Solutions k to the Diophantine equation k = 2n^2 = m^2+1): those terms for which associated m in A002315 and n in A001653 are both prime.
Corresponding p are prime Pell numbers (prime denominators of continued fraction convergents to sqrt(2)).
Corresponding q are prime numerators of the continued fraction convergents to sqrt(2).
Corresponding p, q, p^2, q^2, (p,q), (q,p), etc., form subsequences of many other OEIS sequences; see cross-references.
Any further terms are too large to include here.

Examples

			a(1) = 50 as 50 = 2*5^2 = 7^2 + 1, where 5 and 7 are prime.
		

Crossrefs

Cf. A088920, A118612, A086397, A086395, A002315 (NSW numbers), A088165 (prime NSW numbers = prime RMS numbers (A140480)), A001653, A000129 (Pell numbers), A086383, A101411, A079704, A002522, A008843, A104683, A163742, etc.

Formula

a(n) = 2*(A118612(n+1))^2 = (A086397(n+1))^2 + 1.

A240838 Primes p such that prime(p) + 2*p^2 is prime.

Original entry on oeis.org

2, 3, 5, 13, 41, 43, 139, 173, 227, 239, 359, 463, 541, 691, 743, 761, 821, 823, 827, 887, 1021, 1117, 1289, 1427, 1489, 1637, 1723, 1933, 1999, 2081, 2287, 2309, 2719, 2791, 2833, 2843, 2953, 3329, 3541, 3803, 3823, 3929, 4003, 4007, 4079, 4139, 4297, 4451, 4561, 4597, 4691, 4703, 4817, 4931, 4943
Offset: 1

Views

Author

Keywords

Comments

The associated primes are: 11, 23, 41, 379, 3541, ...

Examples

			2 is in this sequence because 2 and prime(2) + 2*2^2 = 3 + 8 = 11 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in {1..5000} | IsPrime(n) and IsPrime(s) where s is (2*n^2 + NthPrime(n))];
    
  • Mathematica
    Select[Prime[Range[700]],PrimeQ[Prime[#]+2#^2]&] (* Harvey P. Dale, Mar 19 2018 *)
  • PARI
    isok(p) = isprime(p) && isprime(prime(p) + 2*p^2); \\ Michel Marcus, Apr 13 2014

A257404 Numbers of the form p * q^p where p and q are primes, in increasing order.

Original entry on oeis.org

8, 18, 24, 50, 81, 98, 160, 242, 338, 375, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2738, 3362, 3698, 3993, 4418, 5618, 6591, 6962, 7442, 8978, 10082, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1

Views

Author

William Brian Repko, Apr 22 2015

Keywords

Examples

			(2,2):8, (2,3):18, (3,2):24, (2,5):50, (3,3):81, (2,7):98.
		

Crossrefs

Cf. some subsequences: A079704, A104126.

Programs

  • JavaScript
    primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97];
    results = [];
    max = 2 * Math.pow(primes[primes.length-1],2);
    for (i = 0; i < primes.length; i++) {
        for (j = 0; j  < primes.length; j++) {
            p = primes[i];
            q = primes[j];
            n = p * Math.pow(q,p);
            if (n <= max) {
                // add it
                results.push(n);
            } else {
                // break out of this loop
                break;
            }
        }
    }
    // sort results and print them
    results.sort(function(a, b){return a-b}).valueOf();
    
  • Mathematica
    max=10^5; p=q=2; Sort[Reap[While[2*q^2 <= max, While[(n=p*q^p) <= max, Sow@n; p=NextPrime@p]; p=2; q=NextPrime@q ]][[2,1]]] (* Giovanni Resta, May 19 2015 *)
  • PARI
    is(n)={bittest(6,#n=factor(n)~)||return;#n==1&&return(n[1,1]+1==n[2,1]);(n[2,1]==1&&n[2,2]==n[1,1])||(n[2,2]==1&&n[1,2]==n[2,1])} \\ M. F. Hasler, May 04 2015

A308707 a(n) = gcd(n, phi(n) + sigma(n)), where phi is A000010 and sigma is A000203.

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 4, 13, 2, 1, 1, 17, 9, 19, 10, 1, 2, 23, 4, 1, 2, 1, 4, 29, 10, 31, 1, 1, 2, 1, 1, 37, 2, 1, 2, 41, 6, 43, 4, 3, 2, 47, 4, 1, 1, 1, 2, 53, 6, 1, 8, 1, 2, 59, 4, 61, 2, 7, 1, 1, 2, 67, 2, 1, 14, 71, 3, 73, 2, 1, 4, 1, 6, 79, 2, 1, 2, 83, 4, 1, 2, 1, 44, 89, 6
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 18 2019

Keywords

Comments

If 2p = phi(p) + sigma(p), where p is A000040, then:
(i) primes m such that a(m-1) is equal to 1: 2, 5, 17, 37, 101, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 8101, ...
Conjecture: ALL m are primes of the form i^2 + 1 (see A002496);
(ii) the smallest prime k such that a(k-1) is equal to n: 2, 3, 73, 13, 1464101, 43, 197, 113, 19, 31, 156817, 397, 9096257, 71, 405001, 387, ...
(iii) primes r such that a(r-1) is equal to r-1: 2, 3, 313, 23761, 3343777, 12558913, 45326161, 1178491681, ...
From Bernard Schott, Jun 23 2019: (Start)
There are distinct families of integers that satisfy a(k) = 1:
(i) k = p^q with p prime and q >= 2: A001597,
(ii) k = p*q with p, q primes and 2 < p < q: A046388,
(iii) k = 2*p^2 with p prime <> 3: A079704 \ {18},
(iv) conjecture: k = m^2 with m >= 1: A000290 \ {0}; if m is prime, it's not a conjecture, see (i). This conjecture is stronger than the conjecture of the 1st comment. (End)

Crossrefs

Programs

  • Magma
    [Gcd(n, EulerPhi(n)+SumOfDivisors(n)): n in [1..100]];
    
  • PARI
    a(n) = gcd(n, eulerphi(n) + sigma(n)); \\ Michel Marcus, Jun 19 2019

Formula

a(n) = gcd(n, A065387(n)). - Michel Marcus, Jun 19 2019
a(n) = n if n = 1 or n is prime: A008578.
a(2*p) = 2 if p prime >= 3: A100484 \ {4}. - Bernard Schott, Jun 26 2019
Previous Showing 11-20 of 20 results.