A245835
E.g.f.: exp( x*(2 + exp(3*x)) ).
Original entry on oeis.org
1, 3, 15, 108, 945, 9558, 109917, 1412316, 19959777, 306805482, 5087064789, 90370321704, 1710170426097, 34308056537550, 726612812416269, 16188742781216892, 378244417385086785, 9242436410233527762, 235609985190361119525, 6252379688953421699760, 172380307421633200750161
Offset: 0
E.g.f.: E(x) = 1 + 3*x + 15*x^2/2! + 108*x^3/3! + 945*x^4/4! + 9558*x^5/5! +...
where E(x) = exp(2*x) * exp(x*exp(3*x)).
O.g.f.: A(x) = 1 + 3*x + 15*x^2 + 108*x^3 + 945*x^4 + 9558*x^5 + 109917*x^6 +...
where
A(x) = 1/(1-2*x) + x/(1-5*x)^2 + x^2/(1-8*x)^3 + x^3/(1-11*x)^4 + x^4/(1-14*x)^5 +...
-
Table[Sum[Binomial[n,k] * (3*k+2)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 03 2014 *)
With[{nn=20},CoefficientList[Series[Exp[x(2+Exp[3x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 06 2015 *)
-
{a(n)=local(A=1);A=exp( x*(2 + exp(3*x +x*O(x^n))) );n!*polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (3*k+2)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0,n,(3*k+2)^(n-k)*binomial(n,k))}
for(n=0,30,print1(a(n),", "))
A355471
Expansion of Sum_{k>=0} (x/(1 - k^2 * x))^k.
Original entry on oeis.org
1, 1, 2, 10, 77, 808, 11257, 196072, 4136897, 103755904, 3034193921, 101901347944, 3885951145969, 166605168800704, 7961498177012993, 420976047757358776, 24475992585921169553, 1556007778666449968128, 107625967130820901112833
Offset: 0
-
Flatten[{1, Table[Sum[Binomial[n-1,k-1] * k^(2*(n-k)), {k,1,n}], {n,1,20}]}] (* Vaclav Kotesovec, Feb 16 2023 *)
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-k^2*x))^k))
-
a(n) = if(n==0, 1, sum(k=1, n, k^(2*(n-k))*binomial(n-1, k-1)));
A367874
Expansion of e.g.f. exp(x * (2 + exp(x))).
Original entry on oeis.org
1, 3, 11, 48, 241, 1358, 8445, 57256, 419233, 3290202, 27507349, 243731084, 2278919697, 22402234390, 230781192301, 2484462888312, 27880896280513, 325432611292082, 3943062342781605, 49504837209940612, 642982531293731761, 8626753575445207278
Offset: 0
A196794
a(n) = Sum_{k=0..n} binomial(n,k)*2^k*(k+1)^(n-k).
Original entry on oeis.org
1, 3, 13, 69, 425, 2953, 22701, 190445, 1725777, 16757649, 173244629, 1896821941, 21897166137, 265525063001, 3371067773565, 44683137692157, 616811052816545, 8847765111928609, 131622808197394341, 2027097866771329349, 32267707989783480201, 530125689222591861993
Offset: 0
-
S:= series(exp(x+2*x*exp(x)),x,51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Jan 20 2017
-
{a(n)=sum(k=0,n,binomial(n,k)*2^k*(k+1)^(n-k))}
-
{a(n)=polcoeff(sum(m=0,n,2^m*x^m/(1-(m+1)*x+x*O(x^n))^(m+1)),n)}
-
{a(n)=n!*polcoeff(exp(x+2*x*exp(x+x*O(x^n))),n)}
A116072
Central terms of triangle A116071, which equals Pascal's triangle to the matrix power of Pascal's triangle.
Original entry on oeis.org
1, 2, 18, 200, 2870, 49392, 976668, 21697104, 532727910, 14275220960, 413469332276, 12845983030608, 425442421627132, 14941814934855200, 554044899080129400, 21608731448473756320, 883563752144886420870
Offset: 0
-
{a(n)=local(X=x+x*O(x^(2*n)),Y=y+y*O(y^n)); (2*n)!*polcoeff(polcoeff(exp(X*(Y+exp(X))),2*n,x),n,y)}
A196795
a(n) = Sum_{k=0..n} binomial(n,k)*3^k*(k+1)^(n-k).
Original entry on oeis.org
1, 4, 22, 145, 1096, 9259, 85924, 865183, 9364864, 108173827, 1325589676, 17149360111, 233271228880, 3324545097475, 49493784653644, 767665750130839, 12376226335249024, 206967901014192643, 3583561993192959436, 64136093489935863583, 1184711492540805987856
Offset: 0
-
Table[Sum[Binomial[n,k]3^k (k+1)^(n-k),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 12 2012 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*3^k*(k+1)^(n-k))}
-
{a(n)=polcoeff(sum(m=0,n,3^m*x^m/(1-(m+1)*x+x*O(x^n))^(m+1)),n)}
-
{a(n)=n!*polcoeff(exp(x+3*x*exp(x+x*O(x^n))),n)}
A367875
Expansion of e.g.f. exp(x * (3 + exp(x))).
Original entry on oeis.org
1, 4, 18, 91, 512, 3169, 21352, 155257, 1209680, 10039825, 88318136, 819958033, 8004898600, 81913041721, 876117919616, 9770201709649, 113347591376672, 1365288066794017, 17043527322085096, 220145837754233713, 2937871757773069496, 40451715334029650953
Offset: 0
A375655
Expansion of e.g.f. exp(x^2 + x * exp(x^2/2)).
Original entry on oeis.org
1, 1, 3, 10, 37, 186, 931, 5608, 36345, 252892, 1961011, 15811896, 139137373, 1286591320, 12584565267, 130564271776, 1410581283121, 16095825151248, 190917669584035, 2366869021623712, 30550349329738581, 408806590130340256, 5688859328729212483
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2+x*exp(x^2/2))))
-
a(n) = n!*sum(k=0, n\2, ((n-2*k+2)/2)^k/(k!*(n-2*k)!));
A375656
Expansion of e.g.f. exp(x^3 + x * exp(x^3/6)).
Original entry on oeis.org
1, 1, 1, 7, 29, 81, 541, 3781, 18537, 129529, 1171961, 8446131, 66198661, 683784817, 6492131829, 59303102041, 664191218321, 7659196889841, 82391350746097, 991483941558079, 13066764825298221, 164001743446274161, 2139651772557011021, 30946063565684912877
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[x^3+x Exp[x^3/6]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^3+x*exp(x^3/6))))
-
a(n) = n!*sum(k=0, n\3, ((n-3*k+6)/6)^k/(k!*(n-3*k)!));
A224786
G.f. satisfies: A(x) = Sum_{n>=0} x^n / (A(x) - n*x)^n.
Original entry on oeis.org
1, 1, 1, 2, 6, 23, 110, 607, 3742, 25324, 185566, 1457998, 12195992, 108010446, 1008224881, 9883048933, 101418491070, 1086613660608, 12126900841444, 140682966122152, 1693340044490513, 21111988598271746, 272228110567491910, 3625334790162237116
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 110*x^6 + 607*x^7 +...
where, by definition,
A(x) = 1 + x/(A(x) - x) + x^2/(A(x) - 2*x)^2 + x^3/(A(x) - 3*x)^3 + x^4/(A(x) - 4*x)^4 + x^5/(A(x) - 5*x)^5 +....
Also, the g.f. satisfies:
A(x) = 1 + x/A(x) + 2*x^2/A(x)^2 + 6*x^3/A(x)^3 + 23*x^4/A(x)^4 + 104*x^5/A(x)^5 + 537*x^6/A(x)^6 +...+ A080108(n)*x^n/A(x)^n +...
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/(A-m*x+x*O(x^n))^m)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))