cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A245835 E.g.f.: exp( x*(2 + exp(3*x)) ).

Original entry on oeis.org

1, 3, 15, 108, 945, 9558, 109917, 1412316, 19959777, 306805482, 5087064789, 90370321704, 1710170426097, 34308056537550, 726612812416269, 16188742781216892, 378244417385086785, 9242436410233527762, 235609985190361119525, 6252379688953421699760, 172380307421633200750161
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2014

Keywords

Examples

			E.g.f.: E(x) = 1 + 3*x + 15*x^2/2! + 108*x^3/3! + 945*x^4/4! + 9558*x^5/5! +...
where E(x) = exp(2*x) * exp(x*exp(3*x)).
O.g.f.: A(x) = 1 + 3*x + 15*x^2 + 108*x^3 + 945*x^4 + 9558*x^5 + 109917*x^6 +...
where
A(x) = 1/(1-2*x) + x/(1-5*x)^2 + x^2/(1-8*x)^3 + x^3/(1-11*x)^4 + x^4/(1-14*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * (3*k+2)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 03 2014 *)
    With[{nn=20},CoefficientList[Series[Exp[x(2+Exp[3x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 06 2015 *)
  • PARI
    {a(n)=local(A=1);A=exp( x*(2 + exp(3*x +x*O(x^n))) );n!*polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (3*k+2)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,(3*k+2)^(n-k)*binomial(n,k))}
    for(n=0,30,print1(a(n),", "))

Formula

O.g.f.: Sum_{n>=0} x^n / (1 - (3*n+2)*x)^(n+1).
a(n) = Sum_{k=0..n} binomial(n,k) * (3*k+2)^(n-k) for n>=0.
a(n) ~ exp((n+6*r^2)/(1+3*r)) * n! / (r^n*sqrt(2*Pi*(-6*r^2*(2+3*r) + n*(1+9*r+9*r^2)) / (1+3*r))), where r is the root of the equation r*(2 + (1+3*r)*exp(3*r)) = n. - Vaclav Kotesovec, Aug 03 2014
(a(n)/n!)^(1/n) ~ 3*exp(1/(2*LambertW(sqrt(3*n)/2))) / (2*LambertW(sqrt(3*n)/2)). - Vaclav Kotesovec, Aug 06 2014

A355471 Expansion of Sum_{k>=0} (x/(1 - k^2 * x))^k.

Original entry on oeis.org

1, 1, 2, 10, 77, 808, 11257, 196072, 4136897, 103755904, 3034193921, 101901347944, 3885951145969, 166605168800704, 7961498177012993, 420976047757358776, 24475992585921169553, 1556007778666449968128, 107625967130820901112833
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n-1,k-1] * k^(2*(n-k)), {k,1,n}], {n,1,20}]}] (* Vaclav Kotesovec, Feb 16 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-k^2*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, k^(2*(n-k))*binomial(n-1, k-1)));

Formula

a(n) = Sum_{k=1..n} k^(2*(n-k)) * binomial(n-1,k-1) for n > 0.

A367874 Expansion of e.g.f. exp(x * (2 + exp(x))).

Original entry on oeis.org

1, 3, 11, 48, 241, 1358, 8445, 57256, 419233, 3290202, 27507349, 243731084, 2278919697, 22402234390, 230781192301, 2484462888312, 27880896280513, 325432611292082, 3943062342781605, 49504837209940612, 642982531293731761, 8626753575445207278
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k+2)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k / (1 - (k+2)*x)^(k+1).
a(n) = Sum_{k=0..n} (k+2)^(n-k) * binomial(n,k).
a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * k * a(n-k). - Ilya Gutkovskiy, Feb 02 2024

A196794 a(n) = Sum_{k=0..n} binomial(n,k)*2^k*(k+1)^(n-k).

Original entry on oeis.org

1, 3, 13, 69, 425, 2953, 22701, 190445, 1725777, 16757649, 173244629, 1896821941, 21897166137, 265525063001, 3371067773565, 44683137692157, 616811052816545, 8847765111928609, 131622808197394341, 2027097866771329349, 32267707989783480201, 530125689222591861993
Offset: 0

Views

Author

Paul D. Hanna, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    S:= series(exp(x+2*x*exp(x)),x,51):
    seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Jan 20 2017
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*2^k*(k+1)^(n-k))}
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,2^m*x^m/(1-(m+1)*x+x*O(x^n))^(m+1)),n)}
    
  • PARI
    {a(n)=n!*polcoeff(exp(x+2*x*exp(x+x*O(x^n))),n)}

Formula

O.g.f.: Sum_{n>=0} 2^n*x^n/(1 - (n+1)*x)^(n+1).
E.g.f.: exp(x + 2*x*exp(x)).

A116072 Central terms of triangle A116071, which equals Pascal's triangle to the matrix power of Pascal's triangle.

Original entry on oeis.org

1, 2, 18, 200, 2870, 49392, 976668, 21697104, 532727910, 14275220960, 413469332276, 12845983030608, 425442421627132, 14941814934855200, 554044899080129400, 21608731448473756320, 883563752144886420870
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^(2*n)),Y=y+y*O(y^n)); (2*n)!*polcoeff(polcoeff(exp(X*(Y+exp(X))),2*n,x),n,y)}

Formula

a(n) = (n+1)*A000108(n)*A000248(n).

A196795 a(n) = Sum_{k=0..n} binomial(n,k)*3^k*(k+1)^(n-k).

Original entry on oeis.org

1, 4, 22, 145, 1096, 9259, 85924, 865183, 9364864, 108173827, 1325589676, 17149360111, 233271228880, 3324545097475, 49493784653644, 767665750130839, 12376226335249024, 206967901014192643, 3583561993192959436, 64136093489935863583, 1184711492540805987856
Offset: 0

Views

Author

Paul D. Hanna, Oct 06 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]3^k (k+1)^(n-k),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 12 2012 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*3^k*(k+1)^(n-k))}
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,3^m*x^m/(1-(m+1)*x+x*O(x^n))^(m+1)),n)}
    
  • PARI
    {a(n)=n!*polcoeff(exp(x+3*x*exp(x+x*O(x^n))),n)}

Formula

O.g.f.: Sum_{n>=0} 3^n*x^n/(1 - (n+1)*x)^(n+1).
E.g.f.: exp(x + 3*x*exp(x)).

A367875 Expansion of e.g.f. exp(x * (3 + exp(x))).

Original entry on oeis.org

1, 4, 18, 91, 512, 3169, 21352, 155257, 1209680, 10039825, 88318136, 819958033, 8004898600, 81913041721, 876117919616, 9770201709649, 113347591376672, 1365288066794017, 17043527322085096, 220145837754233713, 2937871757773069496, 40451715334029650953
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k+3)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k / (1 - (k+3)*x)^(k+1).
a(n) = Sum_{k=0..n} (k+3)^(n-k) * binomial(n,k).
a(0) = 1; a(n) = 3 * a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * k * a(n-k). - Ilya Gutkovskiy, Feb 02 2024

A375655 Expansion of e.g.f. exp(x^2 + x * exp(x^2/2)).

Original entry on oeis.org

1, 1, 3, 10, 37, 186, 931, 5608, 36345, 252892, 1961011, 15811896, 139137373, 1286591320, 12584565267, 130564271776, 1410581283121, 16095825151248, 190917669584035, 2366869021623712, 30550349329738581, 408806590130340256, 5688859328729212483
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2+x*exp(x^2/2))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, ((n-2*k+2)/2)^k/(k!*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} ((n-2*k+2)/2)^k / (k! * (n-2*k)!).

A375656 Expansion of e.g.f. exp(x^3 + x * exp(x^3/6)).

Original entry on oeis.org

1, 1, 1, 7, 29, 81, 541, 3781, 18537, 129529, 1171961, 8446131, 66198661, 683784817, 6492131829, 59303102041, 664191218321, 7659196889841, 82391350746097, 991483941558079, 13066764825298221, 164001743446274161, 2139651772557011021, 30946063565684912877
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x^3+x Exp[x^3/6]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^3+x*exp(x^3/6))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, ((n-3*k+6)/6)^k/(k!*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} ((n-3*k+6)/6)^k / (k! * (n-3*k)!).

A224786 G.f. satisfies: A(x) = Sum_{n>=0} x^n / (A(x) - n*x)^n.

Original entry on oeis.org

1, 1, 1, 2, 6, 23, 110, 607, 3742, 25324, 185566, 1457998, 12195992, 108010446, 1008224881, 9883048933, 101418491070, 1086613660608, 12126900841444, 140682966122152, 1693340044490513, 21111988598271746, 272228110567491910, 3625334790162237116
Offset: 0

Views

Author

Paul D. Hanna, Apr 17 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 110*x^6 + 607*x^7 +...
where, by definition,
A(x) = 1 + x/(A(x) - x) + x^2/(A(x) - 2*x)^2 + x^3/(A(x) - 3*x)^3 + x^4/(A(x) - 4*x)^4 + x^5/(A(x) - 5*x)^5 +....
Also, the g.f. satisfies:
A(x) = 1 + x/A(x) + 2*x^2/A(x)^2 + 6*x^3/A(x)^3 + 23*x^4/A(x)^4 + 104*x^5/A(x)^5 + 537*x^6/A(x)^6 +...+ A080108(n)*x^n/A(x)^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/(A-m*x+x*O(x^n))^m)); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = 1 + G(x/A(x)) where G(x) is the g.f. of A080108, where A080108(n) = Sum_{k=1..n} k^(n-k)*C(n-1,k-1).
Previous Showing 21-30 of 32 results. Next