cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 121 results. Next

A322761 Irregular triangle read by rows in which n-th row lists all partitions of n, in graded reverse lexicographic ordering, using a compressed notation.

Original entry on oeis.org

1, 2, 11, 3, 21, 111, 4, 31, 22, 211, 1111, 5, 41, 32, 311, 221, 2111, 11111, 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111, 7, 61, 52, 511, 43, 421, 4111, 331, 322, 3211, 31111, 2221, 22111, 211111, 1111111
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2018

Keywords

Comments

Officially this is deprecated, since one cannot distinguish between (for example) parts which are 11 and parts which are 1,1. However, it is in common use and is included for completeness. See A036037, A080577, etc., for uncompressed versions.

Examples

			Triangle begins:
1,
2, 11,
3, 21, 111,
4, 31, 22, 211, 1111,
5, 41, 32, 311, 221, 2111, 11111,
6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111,
7, 61, 52, 511, 43, 421, 4111, 331, 322, 3211, 31111, 2221, 22111, 211111, 1111111,
...
...
		

Crossrefs

Cf. A000041 (number of terms in row n), A036037, A080577.
See also A006128.
First column gives A000027.
Last elements of rows give A000042.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [cat(1$n)], [map(x->
        cat(i, x), b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(parse, b(n$2))[]:
    seq(T(n), n=1..10);  # Alois P. Heinz, Dec 30 2018
  • Mathematica
    revlexsort[f_, c_] := OrderedQ[PadRight[{c, f}]];
    Table[FromDigits /@ Sort[IntegerPartitions[n], revlexsort], {n, 1, 8}] // Flatten (* Jean-François Alcover, Oct 20 2020, after Gus Wiseman in A080577 *)

A333484 Sort all positive integers, first by sum of prime indices (A056239), then by decreasing number of prime indices (A001222).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 14, 15, 11, 64, 48, 36, 40, 27, 28, 30, 21, 22, 25, 13, 128, 96, 72, 80, 54, 56, 60, 42, 44, 45, 50, 26, 33, 35, 17, 256, 192, 144, 160, 108, 112, 120, 81, 84, 88, 90, 100, 52, 63, 66, 70, 75, 34, 39, 49, 55, 19
Offset: 0

Views

Author

Gus Wiseman, May 10 2020

Keywords

Comments

A refinement of A215366.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
    1
    2
    4   3
    8   6   5
   16  12   9  10   7
   32  24  18  20  14  15  11
   64  48  36  40  27  28  30  21  22  25  13
  128  96  72  80  54  56  60  42  44  45  50  26  33  35  17
		

Crossrefs

Row lengths are A000041.
Ignoring length gives A215366 (graded Heinz numbers).
Sorting by increasing length gives A333483.
Number of prime indices is A001222.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in (sum/length/colex) order are A036037.
Sum of prime indices is A056239.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Lexicographically ordered partitions are A193073.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    Join@@@Table[Sort[Times@@Prime/@#&/@IntegerPartitions[n,{k}]],{n,0,8},{k,n,0,-1}]

A333486 Length of the n-th reversed integer partition in graded reverse-lexicographic order. Partition lengths of A228531.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 4, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 5, 6, 7, 1, 2, 2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 6, 7, 8, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 7, 8, 9
Offset: 0

Views

Author

Gus Wiseman, May 23 2020

Keywords

Examples

			Triangle begins:
  0
  1
  1 2
  1 2 3
  1 2 2 3 4
  1 2 2 3 3 4 5
  1 2 2 3 2 3 3 4 4 5 6
  1 2 2 3 2 3 3 4 3 4 4 5 5 6 7
  1 2 2 2 3 3 4 2 3 3 4 3 4 4 5 4 5 5 6 6 7 8
		

Crossrefs

Row lengths are A000041.
The generalization to compositions is A000120.
Row sums are A006128.
The same partition has sum A036042.
The length-sensitive version (sum/length/revlex) is A036043.
The colexicographic version (sum/colex) is A049085.
The same partition has minimum A182715.
The lexicographic version (sum/lex) is A193173.
The tetrangle of these partitions is A228531.
The version for non-reversed partitions is A238966.
The same partition has Heinz number A334436.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Partitions in lexicographic order (sum/lex) are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Partitions in opposite Abramowitz-Stegun order (sum/length/revlex) are A334439.

Programs

  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Table[Length/@Sort[Reverse/@IntegerPartitions[n],revlexsort],{n,0,8}]

A108244 Triangle read by rows: row n gives list of all compositions of n ordered first by decreasing length, then by reverse colexicographical order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 2, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 2, 1, 3, 1, 1, 1, 4, 2, 3, 3, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Hugo van der Sanden, Jun 20 2005

Keywords

Comments

An example of a sequence which contains all finite sequences of positive integers as subsequences.
From Andrey Zabolotskiy, May 18 2018: (Start)
At first, the ordering within the compositions of fixed length coincides with the lexicographical order (which is the case of A228369), but for n = 5 the partitions {2, 1, 2}, {1, 3, 1}, {2, 2, 1} go in this order because the order becomes reverse lexicographical when they are reversed (read right-to-left): {2, 1, 2}, {1, 3, 1}, {1, 2, 2}.
Length of k-th composition is A124748(k-1)+1.
Reversing every composition gives A296772. (End)

Examples

			The first 5 rows are:
{1}
{1, 1}, {2}
{1, 1, 1}, {1, 2}, {2, 1}, {3}
{1, 1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {1, 3}, {2, 2}, {3, 1}, {4}
{1, 1, 1, 1, 1}, {1, 1, 1, 2}, {1, 1, 2, 1}, {1, 2, 1, 1}, {2, 1, 1, 1}, {1, 1, 3}, {1, 2, 2}, {2, 1, 2}, {1, 3, 1}, {2, 2, 1}, {3, 1, 1}, {1, 4}, {2, 3}, {3, 2}, {4, 1}, {5}
		

Crossrefs

Triangles of compositions: A066099 (main entry for compositions; similar to the Mathematica ordering for partitions, A080577), A124734 (similar to the Abramowitz & Stegun ordering for partitions, A036036), and this sequence (similar to the Maple partition ordering, A080576), A296772.

Programs

  • Mathematica
    Flatten[ Table[ Reverse[ # ] & /@ Reverse[ Sort[ Flatten[ Permutations[ # ] & /@ Partitions[ n], 1]]], {n, 6}]] (* Robert G. Wilson v, Jun 22 2005 *)

Extensions

More terms from Robert G. Wilson v, Jun 22 2005
Name corrected by Andrey Zabolotskiy, May 18 2018

A194546 Triangle read by rows: T(n,k) is the largest part of the k-th partition of n, with partitions in colexicographic order.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 2, 4, 1, 2, 3, 2, 4, 3, 5, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2011

Keywords

Comments

Row n lists the first A000041(n) terms of A141285.
The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is co-lexicographic, see example. - Joerg Arndt, Sep 13 2013

Examples

			For n = 5 the partitions of 5 in colexicographic order are:
  1+1+1+1+1
  2+1+1+1
  3+1+1
  2+2+1
  4+1
  3+2
  5
so the fifth row is the largest in each partition: 1,2,3,2,4,3,5
Triangle begins:
  1;
  1,2;
  1,2,3;
  1,2,3,2,4;
  1,2,3,2,4,3,5;
  1,2,3,2,4,3,5,2,4,3,6;
  1,2,3,2,4,3,5,2,4,3,6,3,5,4,7;
  1,2,3,2,4,3,5,2,4,3,6,3,5,4,7,2,4,3,6,5,4,8;
...
		

Crossrefs

The sum of row n is A006128(n).
Row lengths are A000041.
Let y be the n-th integer partition in colexicographic order (A211992):
- The maximum of y is a(n).
- The length of y is A193173(n).
- The minimum of y is A196931(n).
- The Heinz number of y is A334437(n).
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Reverse-lexicographically ordered partitions are A080577.
Lexicographically ordered partitions are A193073.

Programs

  • Mathematica
    colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
    Max/@Join@@Table[Sort[IntegerPartitions[n],colex],{n,8}] (* Gus Wiseman, May 31 2020 *)

Formula

a(n) = A061395(A334437(n)). - Gus Wiseman, May 31 2020

Extensions

Definition corrected by Omar E. Pol, Sep 12 2013

A238640 Position of [n, n, ..., n] (n n's) in Mathematica-ordered list of partitions of n^2.

Original entry on oeis.org

1, 1, 3, 19, 168, 1582, 15546, 157051, 1625368, 17159223, 184277224, 2008388660, 22172275440, 247558926150, 2791793968821, 31764451979736, 364283594455091, 4207485803818522, 48908343969469479, 571811846280602486, 6720473048598172508, 79363083519870386700
Offset: 0

Views

Author

Clark Kimberling, Mar 04 2014

Keywords

Examples

			The partitions of 4 in Mathematica order are 4, 31, 22, 211, 1111.  The position of 22 is a(2) = 3.
		

Crossrefs

Cf. A000290, A072213, A080577 (Mathematica ordering), A238638, A238639, A330661, A332706.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> 1 +add(b(n^2-j, j), j=n+1..n^2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 03 2014
  • Mathematica
    r[n_] := Table[n, {k, 1, n}]; Flatten[Table[Position[IntegerPartitions[n^2], r[n]], {n, 0, 8}]]
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1]+If[i>n, 0, b[n-i, i]]]]; a[n_] := 1+Sum[b[n^2-j, j], {j, n+1, n^2}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)

Extensions

a(9)-a(21) from Alois P. Heinz, Sep 03 2014

A330661 T(n,k) is the index within the partitions of n in canonical ordering of the k-th partition whose parts differ pairwise by at most one.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 5, 8, 9, 10, 11, 1, 5, 9, 12, 13, 14, 15, 1, 8, 13, 18, 19, 20, 21, 22, 1, 8, 19, 22, 26, 27, 28, 29, 30, 1, 13, 22, 30, 37, 38, 39, 40, 41, 42, 1, 13, 30, 41, 46, 51, 52, 53, 54, 55, 56, 1, 20, 44, 59, 62, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Peter Dolland, Dec 23 2019

Keywords

Comments

For each length k in [1..n] there is exactly one such partition [p_1,...,p_k], with p_i = a+1 for i=1..j and p_i = a for i=j+1..k, where a = floor(n/k) and j = n - k * a.
If k | n, then all parts p_i are equal. A027750 lists the indices of these partitions in this triangle.
Canonical ordering is also known as graded reverse lexicographic ordering, see A080577 or link below.

Examples

			Partitions of 8 in canonical ordering begin: 8, 71, 62, 611, 53, 521, 5111, 44, 431, 422, 4211, 41111, 332, ... . The partitions whose parts differ pairwise by at most one in this list are 8, 44, 332, ... at indices 1, 8, 13, ... and this gives row 8 of this triangle.
Triangle T(n,k) begins:
  1;
  1,  2;
  1,  2,  3;
  1,  3,  4,  5;
  1,  3,  5,  6,  7;
  1,  5,  8,  9, 10, 11;
  1,  5,  9, 12, 13, 14, 15;
  1,  8, 13, 18, 19, 20, 21, 22;
  1,  8, 19, 22, 26, 27, 28, 29, 30;
  1, 13, 22, 30, 37, 38, 39, 40, 41, 42;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; (n-> `if`(n=0, 1,
          b(subsop(1=[][], l))+g(n, l[1]-1)))(add(j, j=l))
        end:
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
         `if`(i<1, 0, g(n-i, min(n-i, i))+g(n, i-1)))
        end:
    T:= proc(n, k) option remember; 1 + g(n$2)-
          b((q-> [q+1$r, q$k-r])(iquo(n, k, 'r')))
        end:
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Feb 19 2020
  • Mathematica
    b[l_List] := b[l] = Function[n, If[n == 0, 1, b[ReplacePart[l, 1 -> Nothing]] + g[n, l[[1]] - 1]]][Total[l]];
    g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, If[i < 1, 0, g[n - i, Min[n - i, i]] + g[n, i - 1]]];
    T[n_, k_] := T[n, k] = Module[{q, r}, {q, r} = QuotientRemainder[n, k]; 1 + g[n, n] - b[Join[Table[q + 1, {r}], Table[q, {k - r}]]]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
  • PARI
    balP(p) = p[1]-p[#p]<=1
    Row(n)={v=vecsort([Vecrev(p) | p<-partitions(n)], , 4);select(i->balP(v[i]),[1..#v])}
    { for(n=1, 10, print(Row(n))) }

Formula

T(n,1) = 1.
T(n,n) = A000041(n).
T(n,k) = A000041(n) - (n - k) for k = ceiling(n/2)..n.
T(2n,2) = T(2n+1,2) = A216053(n). - Alois P. Heinz, Jan 28 2020

A333485 Heinz numbers of all integer partitions sorted first by sum, then by decreasing length, and finally lexicographically. A code for the Fenner-Loizou tree A228100.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 15, 14, 11, 64, 48, 36, 40, 27, 30, 28, 25, 21, 22, 13, 128, 96, 72, 80, 54, 60, 56, 45, 50, 42, 44, 35, 33, 26, 17, 256, 192, 144, 160, 108, 120, 112, 81, 90, 100, 84, 88, 75, 63, 70, 66, 52, 49, 55, 39, 34, 19
Offset: 0

Views

Author

Gus Wiseman, May 11 2020

Keywords

Comments

A permutation of the positive integers.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), which gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              11: {5}                 56: {1,1,1,4}
    2: {1}             64: {1,1,1,1,1,1}       45: {2,2,3}
    4: {1,1}           48: {1,1,1,1,2}         50: {1,3,3}
    3: {2}             36: {1,1,2,2}           42: {1,2,4}
    8: {1,1,1}         40: {1,1,1,3}           44: {1,1,5}
    6: {1,2}           27: {2,2,2}             35: {3,4}
    5: {3}             30: {1,2,3}             33: {2,5}
   16: {1,1,1,1}       28: {1,1,4}             26: {1,6}
   12: {1,1,2}         25: {3,3}               17: {7}
    9: {2,2}           21: {2,4}              256: {1,1,1,1,1,1,1,1}
   10: {1,3}           22: {1,5}              192: {1,1,1,1,1,1,2}
    7: {4}             13: {6}                144: {1,1,1,1,2,2}
   32: {1,1,1,1,1}    128: {1,1,1,1,1,1,1}    160: {1,1,1,1,1,3}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}      108: {1,1,2,2,2}
   18: {1,2,2}         72: {1,1,1,2,2}        120: {1,1,1,2,3}
   20: {1,1,3}         80: {1,1,1,1,3}        112: {1,1,1,1,4}
   15: {2,3}           54: {1,2,2,2}           81: {2,2,2,2}
   14: {1,4}           60: {1,1,2,3}           90: {1,2,2,3}
The triangle begins:
    1
    2
    4   3
    8   6   5
   16  12   9  10   7
   32  24  18  20  15  14  11
   64  48  36  40  27  30  28  25  21  22  13
  128  96  72  80  54  60  56  45  50  42  44  35  33  26  17
		

Crossrefs

Row lengths are A000041.
The constructive version is A228100.
Sorting by increasing length gives A334433.
The version with rows reversed is A334438.
Sum of prime indices is A056239.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Lexicographically ordered partitions are A193073.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
If the fine ordering is by Heinz number instead of lexicographic we get A333484.

Programs

  • Mathematica
    ralensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]>Length[c],OrderedQ[{f,c}]];
    Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],ralensort],{n,0,8}]

Formula

A001221(a(n)) = A115623(n).
A001222(a(n - 1)) = A331581(n).
A061395(a(n > 1)) = A128628(n).

Extensions

Name extended by Peter Luschny, Dec 23 2020

A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

First differs from the revlex (instead of colex) version for partitions of 12.
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (3)(12)
  4: (4)(13)
  5: (5)(23)(14)
  6: (6)(24)(15)(123)
  7: (7)(34)(25)(16)(124)
  8: (8)(35)(26)(17)(134)(125)
  9: (9)(45)(36)(27)(18)(234)(135)(126)
		

Crossrefs

Positions of first appearances are A015724 plus one.
Taking lex instead of colex gives A026793 (non-reversed: A118457).
Triangle sums are A066189.
Reversing all partitions gives A344090.
The non-strict version is A344091.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.

Programs

  • Mathematica
    Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]

A115722 Table of Durfee square of partitions in Mathematica order.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2
Offset: 0

Views

Author

Keywords

Examples

			First few rows:
0;
1,1;
1,1,1;
1,1,2,1,1;
1,1,2,1,2,1,1;
		

Crossrefs

Row lengths A000041, totals A115995.

Programs

  • Mathematica
    {0}~Join~Array[Map[Block[{k = Length@ #}, While[Nand[k > 0, AllTrue[Take[#, k], # >= k &]], k--]; k] &, IntegerPartitions@ #] &, 10] // Flatten (* Michael De Vlieger, Jan 17 2020 *)

Formula

If partition is laid out in descending order p(1),p(2),...,p(k) without repetition factors (e.g. [3,2,2,1,1,1]), a(P) = max_k min(k,p(k)).
Previous Showing 61-70 of 121 results. Next