A331553 Irregular triangle T(n,k) = A115722(n,k)^2 - n.
0, 0, 1, 1, 2, 2, 2, 3, 3, 0, 3, 3, 4, 4, 1, 4, 1, 4, 4, 5, 5, 2, 5, 2, 2, 5, 2, 2, 5, 5, 6, 6, 3, 6, 3, 3, 6, 3, 3, 3, 6, 3, 3, 6, 6, 7, 7, 4, 7, 4, 4, 7, 4, 4, 4, 4, 7, 4, 4, 4, 4, 7, 4, 4, 4, 7, 7, 8, 8, 5, 8, 5, 5, 8, 5, 5, 5, 5, 8, 5, 5, 5, 5, 5, 8, 0, 5
Offset: 0
Examples
Table begins: 0: 0; 1: 0; 2: 1, 1; 3: 2, 2, 2; 4: 3, 3, 0, 3, 3; 5: 4, 4, 1, 4, 1, 4, 4; 6: 5, 5, 2, 5, 2, 2, 5, 2, 2, 5, 5; 7: 6, 6, 3, 6, 3, 3, 6, 3, 3, 3, 6, 3, 3, 6, 6; ... Table of distinct terms: 1: 0; 2: 1; 3: 2; 4: 0, 3; 5: 1, 4; 6: 2, 5; 7: 3, 6; 8: 4, 7; 9: 0, 5, 8; ... For n = 4, the partitions are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}. The partition {2, 2} has Durfee square s = 2; for all partitions except {2, 2}, we have Durfee square with s = 1.
Links
- Eric Weisstein's World of Mathematics, Durfee Square.
Programs
-
Mathematica
{0}~Join~Array[Map[Total@ # - Block[{k = Length@ #}, While[Nand[k > 0, AllTrue[Take[#, k], # >= k &]], k--]; k]^2 &, IntegerPartitions[#]] &, 12] // Flatten
Comments