A075152
Number of possible permutations of a Rubik cube of size n X n X n.
Original entry on oeis.org
1, 3674160, 43252003274489856000, 7401196841564901869874093974498574336000000000, 282870942277741856536180333107150328293127731985672134721536000000000000000
Offset: 1
Warren Power, Sep 05 2002
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
- Robert Munafo, Table of n, a(n) for n = 1..27 (first 10 terms from Robert G. Wilson v)
- Answers.com, Rubik's Cube.
- Isaiah Bowers, How To Solve A Rubik's Cube.
- Richard Carr, The Number of Possible Positions of an N x N x N Rubik Cube
- Cube Lovers, Discussions on the mathematics of the cube
- Cube Lovers Archive, Mailing List
- Cube20.org, God's Number is 20
- Christophe Goudey, Information
- David Joyner, Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys, 2008. See Example 4.5.1. p. 73.
- Naren Ramesh, Generalising the configurations of an N X N X N Rubik's Cube, Parabola (2023) Vol. 59, Issue 3. See p. 22.
- Jaap Scherphuis, Puzzle Pages
- Eric Weisstein's World of Mathematics, Rubik's Cube
- WikiHow, How to Solve a Rubik's Cube with the Layer Method
- Wikipedia, Rubik's Cube
- Wikipedia, Professor's Cube
-
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := 1; C := 1; D := 0; E := (n+1)*(n-3)/4; G := (n-1)*(n-3)/4; else A := n/2; F := 1; B := 1; C := 0; D := 0; E := n*(n-2)/4; G := (n-2)^2/4; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
-
f[n_] := Block[{a, b, c, d, e, f, g}, If[OddQ@ n, a = (n - 1)/2; b = c = 1; d = f = 0; e = (n + 1) (n - 3)/4; g = (n - 1) (n - 3)/4, a = n/2; b = f = 1; c = d = 0; e = n (n - 2)/4; g = (n - 2)^2/4]; Ceiling[(2^a*((8!/2)*3^7)^b*((12!/2)*2^11)^c*((4^6)/2)^d*(24!/2)^e)/(24^f*((24^6)/2)^g)]]; Array[f, 10] (* Robert G. Wilson v, May 23 2009 *)
f[1]=1; f[2]=7!3^6; f[3]=8!3^7 12!2^10;f[n_]:=f[n-2]*24^6*(24!/24^6)^(n-2);Table[f[n],{n,1,10}] (* Herbert Kociemba, Dec 08 2016 *)
f[1]=1;f[n_]:=7!3^6(6*24!!)^(s=Mod[n,2])24!^(r=(n-s)/2-1)(24!/4!^6)^(r(r+s)); Array[f,5] (* Herbert Kociemba, Jul 03 2022 *)
-
A075152(n) := block( if n = 1 then return (1), [a:1,b:1,c:1,d:1,e:1,f:1,g:1], if mod(n, 2) = 1 then ( a : (n-1)/2, f : 0, b : 1, c : 1, d : 0, e : (n+1)*(n-3)/4, g : (n-1)*(n-3)/4 ) else ( a : n/2, f : 1, b : 1, c : 0, d : 0, e : n*(n-2)/4, g : (n-2)^2/4 ), return ( (2^a * ((factorial(8)/2)*3^7)^b * ((factorial(12)/2)*2^11)^c * ((4^6)/2)^d * (factorial(24)/2)^e) / (24^f * ((24^6)/2)^g) ) )$ for i:1 thru 27 step 1 do ( sprint(i, A075152(i)), newline() )$ /* Robert Munafo, Nov 12 2014 */
-
A075152(n)=ceil(3674160*(11771943321600)^(n%2)*620448401733239439360000^floor((n-2)/2)*(3246670537110000)^floor(((n-2)/2)^2)) \\ Davis Smith, Mar 20 2020
A080614
Consider a 3 X 3 X 3 Rubik's Cube, but allow only the moves T2, D2, F2; sequence gives number of positions that are exactly n moves from the start.
Original entry on oeis.org
1, 3, 5, 8, 13, 21, 23, 13, 5, 3, 1
Offset: 0
A080602
Number of positions of the Rubik's cube at a distance of n moves from the solved state, in the quarter-turn metric.
Original entry on oeis.org
1, 12, 114, 1068, 10011, 93840, 878880, 8221632, 76843595, 717789576, 6701836858, 62549615248, 583570100997, 5442351625028, 50729620202582, 472495678811004, 4393570406220123, 40648181519827392, 368071526203620348
Offset: 0
- Robert G. Bryan (Jerry Bryan), postings to Cube Lovers List, Feb 04, 1995 and Oct 26, 1998.
- Rokicki, Tomas. Thirty years of computer cubing: The search for God's number. 2014. Reprinted in "Barrycades and Septoku: Papers in Honor of Martin Gardner and Tom Rogers", ed. Thane Plambeck and Tomas Rokicki, MAA Press, 2020, pp. 79-98. See Table 9.5.
- Alan Bawden, Cube Lovers Archive, Part 15
- Alan Bawden, Cube Lovers Archive, Part 26
- Mark Longridge, God's Algorithm Calculations for Rubik's Cube...
- Tomas Rokicki, God's Algorithm out to 15q*. Posted Sep 26 2009. - _Tomas Rokicki_, Jul 14 2010
- Thomas Scheunemann, God's Algorithm out to 16q*. Posted Jul 09 2010. - _Tomas Rokicki_, Jul 14 2010
- Thomas Scheunemann, God's Algorithm out to 17q*. Posted Jul 09 2010. - _Tomas Rokicki_, Jul 14 2010
- Tomas Rokicki, God's Algorithm out to 18q*. Posted Jul 19 2014.
Added a(14) and a(15) from my earlier investigations, confirmed by Scheunemann, and also added his result for a(16). -
Tomas Rokicki, Jul 14 2010
Added a(17) from Thomas Scheunemann, a(18) from my God's Number investigations, corrected some links. -
Tomas Rokicki, Sep 01 2014
A005452
Number of positions that the 3 X 3 X 3 Rubik cube puzzle can be in after exactly n moves, up to equivalence under the full group of order 48 of the cube and with a half-turn is considered to be 2 moves.
Original entry on oeis.org
1, 1, 5, 25, 219, 1978, 18395, 171529, 1601725, 14956266, 139629194, 1303138445, 12157779067, 113382522382, 1056867697737, 9843661720634, 91532722388023, 846837132071729, 7668156860181597
Offset: 0
- Robert G. Bryan (Jerry Bryan), postings to Cube Lovers List, Feb 04, 1995 and Oct 26, 1998.
Added a(13)-a(18). This is based on a great deal of work by a large number of people; full links and credit are on cube20.org/qtm. The numbers were calculated by combining the God's number counts on the main page with the symmetric solution counts on the symmetry page. -
Tomas Rokicki, Sep 01 2014
A080583
Number of positions that the 3 X 3 X 3 Rubik cube puzzle can be in after exactly n moves.
Original entry on oeis.org
1, 18, 262, 3502, 46741, 621649, 8240087, 109043123, 1441386411, 19037866206, 251285929522, 3314574738534, 43689000394782, 575342418679410
Offset: 0
A080638
Number of positions that the 3 X 3 X 3 Rubik cube puzzle can be in after exactly n moves, up to equivalence under the full group of order 48 of the cube and with a half-turn is considered to be 1 move.
Original entry on oeis.org
1, 2, 9, 75, 934, 12077, 159131, 2101575, 27762103, 366611212, 4838564147, 63818720716, 841134600018, 11076115427897
Offset: 0
- Robert G. Bryan (Jerry Bryan), posting to Cube Lovers List, Jul 10, 1998.
A257401
God's number for a Rubik's cube of size n X n X n (using the half turn metric).
Original entry on oeis.org
- Jerry Bryan, God's Algorithm for the 2x2x2 Pocket Cube.
- Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, and Andrew Winslow, Algorithms for Solving Rubik's Cubes, in: C. Demetrescu and M. M. Halldórsson (eds.), Algorithms - ESA 2011, 19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011, Proceedings, Lecture Notes in Computer Science, Vol. 6942, Springer, Berlin, Heidelberg, 2011, pp. 689-700; arXiv preprint, arXiv:1106.5736 [cs.DS], 2011.
- Joseph L. Flatley, Rubik's Cube solved in twenty moves, 35 years of CPU time.
- Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge, The Diameter Of The Rubik's Cube Group Is Twenty, SIAM J. of Discrete Math, Vol. 27, No. 2 (2013), pp. 1082-1105.
- Jaap Scherphuis, Mini Cube, the 2×2×2 Rubik's Cube.
- Speedsolving.com, Rubik's Cube Fact sheet.
- Wikipedia, Optimal solutions for Rubik's Cube.
A080615
Consider 3 X 3 X 3 Rubik cube, but only allow the moves T2, D2, F2, B2; sequence gives number of positions that are exactly n moves from the start.
Original entry on oeis.org
1, 4, 10, 24, 53, 64, 31, 4, 1
Offset: 0
A080629
Consider 3 X 3 X 3 Rubik cube, but consider only positions of corners; sequence gives number of positions that are exactly n moves from the start.
Original entry on oeis.org
1, 18, 243, 2874, 28000, 205416, 1168516, 5402628, 20776176, 45391616, 15139616, 64736
Offset: 0
A080630
Consider 3 X 3 X 3 Rubik cube, but consider only positions of corners; sequence gives number of positions that are exactly n moves from the start.
Original entry on oeis.org
1, 12, 114, 924, 6539, 39528, 199926, 806136, 2761740, 8656152, 22334112, 32420448, 18780864, 2166720, 6624
Offset: 0
Showing 1-10 of 27 results.
Comments