A184677
Number of numbers <= p^2 with largest prime factor <= p, where p is the n-th prime; a(0) = 1.
Original entry on oeis.org
1, 3, 7, 16, 30, 61, 88, 138, 177, 248, 361, 423, 569, 690, 777, 924, 1137, 1370, 1495, 1765, 1979, 2129, 2452, 2711, 3075, 3563, 3871, 4078, 4412, 4639, 4996, 6027, 6427, 6988, 7272, 8181, 8494, 9135, 9803, 10320, 11031, 11768, 12140, 13315, 13713, 14330
Offset: 0
a(1) = #{1,2,4} = 3 = number of binary powers <= 4;
a(2) = #{1,2,3,4,6,8,9} = 7 = number of 3-smooth numbers <= 9;
a(3) = #{1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25} = 16 = number of 5-smooth numbers <= 25.
-
Block[{nn = 45, w}, w = Array[FactorInteger[#][[All, 1]] &, Prime[nn]^2]; {1}~Join~Table[Count[w[[1 ;; p^2]], ?(AllTrue[#, # <= p &] &)], {p, Prime@ Range@ nn}]] (* _Michael De Vlieger, Mar 13 2021 *)
-
a(n)=if(n==0, return(1)); my(p=prime(n),s=p); forfactored(k=p+1,p^2, if(vecmax(k[2][,1])<=p, s++)); s \\ Charles R Greathouse IV, Nov 27 2017
A318298
Numbers whose set of decimal digits coincides with the set of the indices of their prime factors.
Original entry on oeis.org
12, 14, 154, 1196, 14112, 21888, 53625, 226512, 279174, 358435, 821142, 1222452, 1665664, 2228814, 2454375, 2614248, 2872116, 4425729, 5751746, 8653645, 9551256, 15261246, 19427226, 19644898, 19775998, 21271488, 27676935, 29591892, 29956212, 41878242, 45574144
Offset: 1
1196 is in the sequence because the prime factors are {2, 13, 23} = {prime(1), prime(6), prime(9)}, and 1196 contains the decimal digits 1, 6, 9.
-
with(numtheory):nn:=10^8:
for n from 1 to nn do:
lst:={}:d:=factorset(n):n0:=nops(d):
q:=convert(n,base,10):n1:=nops(q):
p:=product(‘q[i]’, ‘i’=1..n1):
if p<>0
then
for i from 1 to n1 do :
lst:=lst union {ithprime(q[i])}:
od:
if lst = d
then
print(n):
else
fi:fi:
od:
-
ok[n_] := Block[{f = First /@ FactorInteger[n], d}, Last@f < 24 && Min[d = Union@ IntegerDigits@ n] > 0 && Prime[d] == f]; Select[Range[10^6], ok] (* Giovanni Resta, Aug 24 2018 *)
A330583
The orders, with repetition, of the non-cyclic finite simple groups whose orders are 23-smooth.
Original entry on oeis.org
60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 20160, 20160, 25920, 29120, 58800, 62400, 95040, 126000, 175560, 181440, 262080, 443520, 604800, 979200, 1451520, 1814400
Offset: 1
This list contains the orders of all non-cyclic finite simple groups < 12180. However, 29|12180, which is the order of L2(29).
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
A330584
The orders, with repetition, of the non-cyclic finite simple groups that are subquotients of the automorphism groups of sublattices of the Leech lattice.
Original entry on oeis.org
60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 20160, 20160, 25920, 62400, 95040, 126000, 181440, 443520, 604800, 979200, 1451520, 1814400, 3265920, 4245696, 10200960
Offset: 1
All simple groups of order less than 9828 have crystallographic representations within sublattices of the Leech lattice. The smallest nontrivial crystallographic representation of L2(27), of order 9828, is 26-dimensional.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups. Springer, 3rd ed., 1999.
A080785
Least p-smooth number not less n, where p is the smallest prime factor of n.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 7, 8, 9, 16, 11, 16, 13, 16, 16, 16, 17, 32, 19, 32, 24, 32, 23, 32, 25, 32, 27, 32, 29, 32, 31, 32, 36, 64, 36, 64, 37, 64, 48, 64, 41, 64, 43, 64, 48, 64, 47, 64, 49, 64, 54, 64, 53, 64, 60, 64, 64, 64, 59, 64, 61, 64, 64, 64, 72, 128, 67, 128, 72, 128, 71
Offset: 1
-
a[n_] := Module[{p, k}, p = FactorInteger[n][[1, 1]]; For[k = n, True, k++, If[FactorInteger[k][[-1, 1]] <= p, Return[k]]]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 15 2021 *)
A373944
Lexicographically earliest sequence of distinct positive integers such that for A(k) <= n < A(k+1); rad(Product_{i = 1..n} a(i)) = A002110(k), where A = A002110, rad = A007947, k >= 0, n >= 1.
Original entry on oeis.org
1, 2, 4, 8, 16, 3, 6, 9, 12, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 5, 10, 15, 20, 25, 30, 40, 45, 50, 60, 75, 80, 90, 100, 120, 125, 135, 150, 160, 180, 200, 225, 240, 250, 270, 300, 320, 324, 360, 375, 384, 400
Offset: 1
k = 0 --> A(0) <= n < A(1) --> 1 <= n < 2 --> n = 1 --> a(1) = 1 since rad(1) = 1 = A(0).
k = 1 --> A(1) <= n < A(2) --> 2 <= n < 6 --> n = 2,3,4,5 --> a(2,3,4,5) = 2,4,8,16 (the first 4 terms of A000079, excluding 1).
k = 2 --> 6 <= n < 30 --> n = 6,7,8,9,...,29 --> a(6,7,8,9...,29) = 3,6,9,12,...,288 (the first 24 terms of A003586 excluding all above).
k = 3 --> 30 <= n < 210 --> n = 30,31,32,...,209 --> a(30,31,32,...,209) = 5,10,15,...,19200 (the first 180 terms of A051037 excluding all above).
Sequence can be presented as an irregular table T(n,k), in which the n-th row commences A008578(n); n >= 1, and T(n,k) is the k-th prime(n)-smooth number which has not appeared earlier.
Table starts:
1;
2,4,8,16;
3,6,9,12,18,24,27,32,...,288;
5,10,15,20,25,30,40,45,50,60,...,19200;
7,14,21,28,...,13829760;
Cf.
A000040,
A002110,
A002473,
A003586,
A007947,
A051037,
A051038,
A080197,
A080681,
A080682,
A080683.
-
(* First, load function f from A162306 *)
P = m = 1; Flatten@ Join[{{1}}, Reap[Do[P *= Prime[i]; (Sow@ Select[#, Nand[# <= m, FactorInteger[#][[-1, 1]] < Prime[i]] &]; m = #[[-1]]) &@ f[P, P^4][[;; P*Prime[i + 1] - 1]], {i, 3}] ][[-1, 1]]] (* Michael De Vlieger, Jun 24 2024 *)
A363794
a(n) = smallest prime(n)-smooth number k such that r(k) >= r(P(n+1)), where r(n) = A010846(n) and P(n) = A002110(n).
Original entry on oeis.org
16, 72, 540, 6300, 92400, 1681680, 36756720, 921470550, 27886608750, 970453984500, 37905932634570
Offset: 1
a(1) = 16 since r(2^4) = 5 and r(6) = 5; numbers in row 16 of A162306 are its divisors {1, 2, 4, 8, 16}, while row 6 of A162306 is {1, 2, 3, 4, 6}.
a(2) = 72 = A003586(18) since r(72) = r(30) = 18. 72 is the 8th term in A003586 that is not in A000961.
a(3) = 540 since r(540) = 69 which exceeds r(210) = 68.
a(4) = 6300 since r(6300) = 290 which exceeds r(2310) = 283, etc.
Table showing the relationship of a(n) to r(P(n)) = A363061(n), with p(n) = prime(n), P(n+1) = A002110(n+1), r(a(n)) = A010846(a(n)), and j the index such that S(r(a(n))) = T(j) = a(n). a(n) = m*P(n).
n p(n) P(n+1) a(n) r(P(n)) r(a(n)) j m
--------------------------------------------------------------
1 2 6 16 5 5 4 8
2 3 30 72 18 18 8 12
3 5 210 540 68 69 13 18
4 7 2310 6300 283 290 22 30
5 11 30030 92400 1161 1165 29 40
6 13 510510 1681680 4843 4848 42 56
7 17 9699690 36756720 19985 19994 53 72
8 19 223092870 921470550 83074 83435 68 95
9 23 6469693230 27886608750 349670 351047 89 125
10 29 200560490130 970453984500 1456458 1457926 107 150
Cf.
A000079,
A000961,
A002110,
A002473,
A003586,
A007947,
A010846,
A051037,
A051038,
A080197,
A080681,
A080682,
A080683,
A162306,
A363061.
-
nn = 6; rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; f[x_] := FactorInteger[x][[-1, 1]]; S = Array[Product[Prime[i], {i, #}] &, nn + 1]; Table[Set[{p, q}, Prime[n + {0, 1}]]; r = Count[Range[S[[n + 1]]], _?(f[#] <= q &)]; c = k = 1; While[Or[c < r, rad[k] != S[[n]]], If[f[k] <= p, c++]; k++]; k, {n, nn}]
Comments