cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A261721 Fourth-dimensional figurate numbers.

Original entry on oeis.org

1, 1, 5, 1, 6, 15, 1, 7, 20, 35, 1, 8, 25, 50, 70, 1, 9, 30, 65, 105, 126, 1, 10, 35, 80, 140, 196, 210, 1, 11, 40, 95, 175, 266, 336, 330, 1, 12, 45, 110, 210, 336, 462, 540, 495, 1, 13, 50, 125, 245, 406, 588, 750, 825, 715, 1, 14, 55, 140, 280, 476, 714, 960, 1155, 1210, 1001, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 30 2015

Keywords

Comments

Generating polygons for the sequences are: Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, ... .
n-th row sequence is the binomial transform of the fourth row of Pascal's triangle (1,n) followed by zeros; and the fourth partial sum of (1, n, n, n, ...).
n-th row sequence is the binomial transform of:
((n-1) * (0, 1, 3, 3, 1, 0, 0, 0) + (1, 4, 6, 4, 1, 0, 0, 0)).
Given the n-th row of the array (1, b, c, d, ...), the next row of the array is (1, b, c, d, ...) + (0, 1, 5, 15, 35, ...)

Examples

			The array as shown in A257200:
  1,  5, 15,  35,  70, 126, 210,  330, ... A000332
  1,  6, 20,  50, 105, 196, 336,  540, ... A002415
  1,  7, 25,  65, 140, 266, 462,  750, ... A001296
  1,  8, 30,  80, 175, 336, 588,  960, ... A002417
  1,  9, 35,  95, 210, 406, 714, 1170, ... A002418
  1, 10, 40, 110, 245, 476, 840, 1380, ... A002419
  ...
(1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of the fourth row of Pascal's triangle (1,3) followed by zeros: (1, 6, 12, 10, 3, 0, 0, 0, ...); and the fourth partial sum of (1, 3, 3, 3, 0, 0, 0).
(1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of: (2 * (0, 1, 3, 3, 1, 0, 0, 0, ...) + (1, 4, 6, 4, 1, 0, 0, 0, ...)); that is, the binomial transform of (1, 6, 12, 10, 3, 0, 0, 0, ...).
Row 2 of the array is (1, 5, 15, 35, 70, ...) + (0, 1, 5, 15, 35, ...), = (1, 6, 20, 50, 105, ...).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 195 (Table 80).

Crossrefs

Cf. A257200, A261720 (pyramidal numbers), A000332, A002415, A001296, A002417, A002418, A002419.
Similar to A080852 but without row n=0.
Main diagonal gives A256859.

Programs

  • Maple
    A:= (n, k)-> binomial(k+3, 3) + n*binomial(k+3, 4):
    seq(seq(A(d-k, k), k=0..d-1), d=1..13);  # Alois P. Heinz, Aug 31 2015
  • Mathematica
    row[1] = LinearRecurrence[{5, -10, 10, -5, 1}, {1, 5, 15, 35, 70}, m = 10];
    row1 = Join[{0}, row[1] // Most]; row[n_] := row[n] = row[n-1] + row1;
    Table[row[n-k+1][[k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)
  • PARI
    A(n, k) = binomial(k+3, 3) + n*binomial(k+3, 4)
    table(n, k) = for(x=1, n, for(y=0, k-1, print1(A(x, y), ", ")); print(""))
    /* Print initial 6 rows and 8 columns as follows: */
    table(6, 8) \\ Felix Fröhlich, Jul 28 2016

Formula

G.f. for row n: (1 + (n-1)*x)/(1 - x)^5.
A(n,k) = C(k+3,3) + n * C(k+3,4) = A080852(n,k).
E.g.f. as array: exp(y)*(exp(x)*(24 + 24*(3 + x)*y + 36*(1 + x)*y^2 + 4*(1 + 3*x)*y^3 + x*y^4) - 4*(6 + 18*y + 9*y^2 + y^3))/24. - Stefano Spezia, Aug 15 2024

A275490 Square array of 5D pyramidal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 5, 1, 6, 15, 1, 7, 21, 35, 1, 8, 27, 56, 70, 1, 9, 33, 77, 126, 126, 1, 10, 39, 98, 182, 252, 210, 1, 11, 45, 119, 238, 378, 462, 330, 1, 12, 51, 140, 294, 504, 714, 792, 495, 1, 13, 57, 161, 350, 630, 966, 1254, 1287, 715, 1, 14, 63, 182, 406, 756, 1218, 1716, 2079, 2002, 1001
Offset: 2

Views

Author

R. J. Mathar, Jul 30 2016

Keywords

Comments

Let F(r,n,d) = binomial(r+d-2,d-1)* ((r-1)*(n-2)+d) /d be the d-dimensional pyramidal numbers. Then A(n,k) = F(k,n,5).
Sum of the n-th antidiagonal is binomial(n+4,7) + binomial(n+4,5) = A055797(n-1). - Mathew Englander, Oct 27 2020

Examples

			The array starts in rows n>=2 and columns k>=1 as
   1    5   15   35   70  126  210  330  495   715  1001  1365  1820
   1    6   21   56  126  252  462  792 1287  2002  3003  4368  6188
   1    7   27   77  182  378  714 1254 2079  3289  5005  7371 10556
   1    8   33   98  238  504  966 1716 2871  4576  7007 10374 14924
   1    9   39  119  294  630 1218 2178 3663  5863  9009 13377 19292
   1   10   45  140  350  756 1470 2640 4455  7150 11011 16380 23660
   1   11   51  161  406  882 1722 3102 5247  8437 13013 19383 28028
   1   12   57  182  462 1008 1974 3564 6039  9724 15015 22386 32396
   1   13   63  203  518 1134 2226 4026 6831 11011 17017 25389 36764
		

Crossrefs

Cf. Row sums of A080852 (4D), A080851 (3D), A057145 (2D), A077028 (1D).
Cf. A055797.

Programs

  • Mathematica
    Table[Binomial[k + 3, 4] + (# - 2)*Binomial[k + 3, 5] &[m - k + 1], {m, 2, 12}, {k, m - 1}] // Flatten (* Michael De Vlieger, Nov 05 2020 *)

Formula

A(n+2,k) = Sum_{j=0..k-1} A080852(n,j).
A(n,k) = binomial(k+3,4) + (n-2)*binomial(k+3,5). - Mathew Englander, Oct 27 2020

A301972 a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)).

Original entry on oeis.org

0, 1, 4, 21, 112, 570, 2772, 13013, 59488, 266526, 1175720, 5123426, 22108704, 94645460, 402503220, 1702300725, 7165821120, 30043474230, 125523450360, 522857438070, 2172127120800, 9002522512620, 37233403401480, 153704429299746, 633442159732032, 2606543487445100, 10710790748646352, 43957192722175908
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the main diagonal of iterated partial sums array of n-gonal numbers (in other words, a(n) is the n-th (n+2)-dimensional n-gonal number, see also example).

Examples

			For n = 5 we have:
----------------------------
0   1    2    3     4    [5]
----------------------------
0,  1,   5,  12,   22,   35,  ... A000326 (pentagonal numbers)
0,  1,   6,  18,   40,   75,  ... A002411 (pentagonal pyramidal numbers)
0,  1,   7,  25,   65,  140,  ... A001296 (4-dimensional pyramidal numbers)
0,  1,   8,  33,   98,  238,  ... A051836 (partial sums of A001296)
0,  1,   9,  42,  140,  378,  ... A051923 (partial sums of A051836)
0,  1,  10,  52,  192, [570], ... A050494 (partial sums of A051923)
----------------------------
therefore a(5) = 570.
		

Crossrefs

Programs

  • Mathematica
    Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
    nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]

Formula

O.g.f.: (-4 + 31*x - 66*x^2 + 28*x^3 + (4 - 7*x)*(1 - 4*x)^(3/2))/(2*x^2*(1 - 4*x)^(3/2)).
E.g.f.: exp(2*x)*(4 - x + 2*x^2)*BesselI(1,2*x)/x - 2*exp(2*x)*(2 - x)*BesselI(0,2*x).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+3).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
D-finite with recurrence: -(n+2)*(961*n-3215)*a(n) +4*(2081*n^2-4414*n-4668)*a(n-1) -28*(320*n-389)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 27 2020

A301973 a(n) = (n^2 - 3*n + 6)*binomial(n+2,3)/4.

Original entry on oeis.org

0, 1, 4, 15, 50, 140, 336, 714, 1380, 2475, 4180, 6721, 10374, 15470, 22400, 31620, 43656, 59109, 78660, 103075, 133210, 170016, 214544, 267950, 331500, 406575, 494676, 597429, 716590, 854050, 1011840, 1192136, 1397264, 1629705, 1892100, 2187255, 2518146, 2887924, 3299920, 3757650, 4264820
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the partial sums of n-gonal pyramidal numbers (in other words, a(n) is the n-th 4-dimensional n-gonal number).

Crossrefs

Programs

  • Mathematica
    Table[(n^2 - 3 n + 6) Binomial[n + 2, 3]/4, {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - 2 x + 6 x^2)/(1 - x)^6, {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[x] x (24 + 24 x + 24 x^2 + 10 x^3 + x^4)/24, {x, 0, nmax}], x] Range[0, nmax]!
    Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^5, {x, 0, n}], {n, 0, 40}]
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 4, 15, 50, 140}, 41]

Formula

O.g.f.: x*(1 - 2*x + 6*x^2)/(1 - x)^6.
E.g.f.: exp(x)*x*(24 + 24*x + 24*x^2 + 10*x^3 + x^4)/24.
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^5.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).

A333932 a(n) is the least integer that is 4-dimensional pyramidal in exactly n ways.

Original entry on oeis.org

5, 15, 35, 140, 1820, 11375, 820820, 19019000, 10790015600, 1568726956160, 7278234628665, 7271181889157550
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2020

Keywords

Comments

a(n) has exactly n representations as an 4-dimensional pyramidal number P(m, k) = binomial(k + 2, 3)*(k*(m - 2) - m + 6) / 4, with m > 2, k > 1.

Examples

			a(3) = 35 because 35 is the least integer which is 4-dimensional pyramidal in 3 ways (35 = P(3, 4) = P(7, 3) = P(33, 2)).
		

Crossrefs

Extensions

a(9) from Giovanni Resta, Apr 11 2020
a(9) corrected and a(10)-a(12) from Bert Dobbelaere, Apr 14 2020
Previous Showing 11-15 of 15 results.