A081572
Square array of binomial transforms of Fibonacci numbers, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 13, 5, 1, 5, 17, 35, 34, 8, 1, 6, 26, 75, 125, 89, 13, 1, 7, 37, 139, 338, 450, 233, 21, 1, 8, 50, 233, 757, 1541, 1625, 610, 34, 1, 9, 65, 363, 1490, 4172, 7069, 5875, 1597, 55, 1, 10, 82, 535, 2669, 9633, 23165, 32532, 21250, 4181, 89
Offset: 0
The array rows begins as:
1, 1, 2, 3, 5, 8, 13, ... A000045;
1, 2, 5, 13, 34, 89, 233, ... A001519;
1, 3, 10, 35, 125, 450, 1625, ... A081567;
1, 4, 17, 75, 338, 1541, 7069, ... A081568;
1, 5, 26, 139, 757, 4172, 23165, ... A081569;
1, 6, 37, 233, 1490, 9633, 62753, ... A081570;
1, 7, 50, 363, 2669, 19814, 148153, ... A081571;
Antidiagonal triangle begins as:
1;
1, 1;
1, 2, 2;
1, 3, 5, 3;
1, 4, 10, 13, 5;
1, 5, 17, 35, 34, 8;
1, 6, 26, 75, 125, 89, 13;
1, 7, 37, 139, 338, 450, 233, 21;
1, 8, 50, 233, 757, 1541, 1625, 610, 34;
-
A081572:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j+1)*(n-k)^(k-j): j in [0..k]]) >;
[A081572(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
-
T[n_, k_]:= If[n==0, Fibonacci[k+1], Sum[Binomial[k, j]*Fibonacci[j+1]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2021 *)
-
def A081572(n,k): return sum( binomial(k,j)*fibonacci(j+1)*(n-k)^(k-j) for j in (0..k) )
flatten([[A081572(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021
A111776
Triangle read by rows: number of idempotent order-preserving partial transformations (of an n-element chain) of waist k (waist(alpha) = max(Im(alpha))).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 4, 6, 10, 1, 8, 12, 20, 35, 1, 16, 24, 40, 70, 125, 1, 32, 48, 80, 140, 250, 450, 1, 64, 96, 160, 280, 500, 900, 1625
Offset: 0
G(3,2) = 6 because there are exactly 6 idempotent order-preserving partial transformations (on a 3-element chain) of waist 2, namely: (2)->(2), (1,2)->(1,2), (1,2)->(2,2),(1,3)->(3,3), (2,3)->(2,2), (2,3)->(3,3) - the mappings are coordinate-wise
- Laradji, A. and Umar, A. Combinatorial results for semigroups of order-preserving partial transformations. Journal of Algebra 278, (2004), 342-359.
A208736
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level between 0 and 1.
Original entry on oeis.org
0, 0, 0, 1, 5, 22, 91, 361, 1392, 5265, 19653, 72694, 267179, 977593, 3565600, 12975457, 47142021, 171075606, 620303547, 2247803785, 8141857808, 29481675889, 106728951109, 386314552438, 1398132674955, 5059626441177, 18308871648576, 66249898660801
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
Cf.
A208737,
A206901,
A206902,
A206947-
A206950,
A001906,
A025192,
A081567,
A124302,
A124292,
A088305,
A086405,
A012781.
-
Join[{0, 0}, LinearRecurrence[{8, -21, 20, -5}, {0, 1, 5, 22}, 40]]
-
def a(n, d={0:0,1:0,2:0,3:1,4:5,5:22}):
if n in d:
return d[n]
d[n]=8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4)
return d[n]
A208737
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.
Original entry on oeis.org
0, 0, 0, 1, 7, 37, 175, 778, 3325, 13837, 56524, 227866, 909832, 3607294, 14227447, 55894252, 218937532, 855650749, 3338323915, 13007422705, 50631143323, 196928737582, 765495534433, 2974251390529, 11552064922624, 44856304154086
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (10,-36,57,-39,9).
Cf.
A208736,
A206901,
A206902,
A206947-
A206950,
A001906,
A025192,
A081567,
A124302,
A124292,
A088305,
A086405,
A012781.
-
Join[{0}, LinearRecurrence[{10, -36, 57, -39, 9}, {0, 0, 1, 7, 37}, 40]]
-
def a(n, d={0:0,1:0,2:0,3:1,4:7,5:37}):
if n in d:
return d[n]
d[n]=10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5)
return d[n]
A106198
Triangle, columns = successive binomial transforms of Fibonacci numbers.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 13, 10, 4, 1, 8, 34, 35, 17, 5, 1, 13, 89, 125, 75, 26, 6, 1, 21, 233, 450, 338, 139, 37, 7, 1, 34, 610, 1625, 1541, 757, 233, 50, 8, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
5, 13, 10, 4, 1;
8, 34, 35, 17, 5, 1;
13, 89, 125, 75, 26, 6, 1;
21, 233, 450, 338, 139, 37, 7, 1;
...
Column 2 = A081567, second binomial transform of Fibonacci numbers: 1, 3, 10, 35, 125, ...
-
T:= function(n,k)
if k=0 then return Fibonacci(n+1);
else return Sum([0..n-k], j-> Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j));
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 11 2019
-
function T(n,k)
if k eq 0 then return Fibonacci(n+1);
else return (&+[Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j): j in [0..n-k]]);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 11 2019
-
with(combinat);
T:= proc(n, k) option remember;
if k=0 then fibonacci(n+1)
else add( binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j), j=0..n-k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 11 2019
-
Table[If[k==0, Fibonacci[n+1], Sum[Binomial[n-k, j]*Fibonacci[j+1]*k^(n-k-j), {j,0,n-k}]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 11 2019 *)
-
T(n,k) = if(k==0, fibonacci(n+1), sum(j=0,n-k, binomial(n-k,j)*fibonacci( j+1)*k^(n-k-j)) ); \\ G. C. Greubel, Dec 11 2019
-
@CachedFunction
def T(n, k):
if (k==0): return fibonacci(n+1)
else: return sum(binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j) for j in (0..n-k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 11 2019
A214582
Riordan array (1/(1-x-x^2), x*(1+2*x)).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 4, 5, 1, 5, 7, 10, 7, 1, 8, 11, 15, 20, 9, 1, 13, 18, 25, 35, 34, 11, 1, 21, 29, 40, 55, 75, 52, 13, 1, 34, 47, 65, 90, 125, 143, 74, 15, 1, 55, 76, 105, 145, 200, 275, 247, 100, 17, 1
Offset: 0
Triangle begins
1
1, 1
2, 3, 1
3, 4, 5, 1
5, 7, 10, 7, 1
8, 11, 15, 20, 9, 1
13, 18, 25, 35, 34, 11, 1
21, 29, 40, 55, 75, 52, 13, 1
34, 47, 65, 90, 125, 143, 74, 15, 1
55, 76, 105, 145, 200, 275, 247, 100, 17, 1
...
Production array begins
1, 1
1, 2, 1
-2, -4, 2, 1
8, 16, -4, 2, 1
-40, -80, 16, -4, 2, 1
224, 448, -80, 16, -4, 2, 1
-1344, -2688, 448, -80, 16, -4, 2, 1
8448, 16896, -2688, 448, -80, 16, -4, 2, 1
... which is based on A052701.
A260304
a(n) = 5*a(n-1) - 5*a(n-2) for n>1, a(0)=2, a(1)=3.
Original entry on oeis.org
2, 3, 5, 10, 25, 75, 250, 875, 3125, 11250, 40625, 146875, 531250, 1921875, 6953125, 25156250, 91015625, 329296875, 1191406250, 4310546875, 15595703125, 56425781250, 204150390625, 738623046875, 2672363281250, 9668701171875, 34981689453125, 126564941406250
Offset: 0
-
[n le 2 select n+1 else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 23 2015
-
Table[((5 + 2 Sqrt[5]) ((5 - Sqrt[5])/2)^n + (5 - 2 Sqrt[5]) ((5 + Sqrt[5])/2)^n)/5, {n, 0, 30}]
RecurrenceTable[{a[0] == 2, a[1] == 3, a[n] == 5 a[n - 1] - 5 a[n - 2]}, a, {n, 0, 30}] (* Bruno Berselli, Nov 23 2015 *)
-
a(n)=([0,1; -5,5]^n*[2;3])[1,1] \\ Charles R Greathouse IV, Jul 26 2016
A376499
Array read by ascending antidiagonals: A(n,k) = A376484/(2*n+1).
Original entry on oeis.org
1, 1, 3, 1, 3, 9, 1, 3, 10, 27, 1, 3, 10, 35, 81, 1, 3, 10, 35, 125, 243, 1, 3, 10, 35, 126, 450, 729, 1, 3, 10, 35, 126, 462, 1625, 2187, 1, 3, 10, 35, 126, 462, 1715, 5875, 6561, 1, 3, 10, 35, 126, 462, 1716, 6419, 21250, 19683, 1, 3, 10, 35, 126, 462, 1716, 6435, 24157, 76875, 59049
Offset: 1
First ten rows start as follows:
1 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969
1 3 10 35 125 450 1625 5875 21250 76875 278125 1006250 3640625 13171875 47656250
1 3 10 35 126 462 1715 6419 24157 91238 345401 1309574 4970070 18874261 71705865
1 3 10 35 126 462 1716 6435 24309 92358 352485 1350054 5185350 19960020 76964985
1 3 10 35 126 462 1716 6435 24310 92378 352715 1352054 5199975 20055024 77531355
1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200299 20058272 77558325
1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200300 20058300 77558759
1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200300 20058300 77558760
1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200300 20058300 77558760
1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200300 20058300 77558760
All of these are conjectures. Rows:
A000244,
A081567,
A122068. Columns:
A000012,
A000012 * 3,
A095049 for n >= 20. A(1,k) =
A000244, A(2,k) =
A081567, A(3,k) =
A122068 (First 3 rows of the array).A(n,1) = A(n,2) / 3 =
A000012, A(n,3) =
A095049 for n >= 20 (First 3 columns of the array). When k increases, the row of A(n,k) gets closer to
A001700.
Comments