cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A158488 a(n) = 64*n^2 + 8.

Original entry on oeis.org

72, 264, 584, 1032, 1608, 2312, 3144, 4104, 5192, 6408, 7752, 9224, 10824, 12552, 14408, 16392, 18504, 20744, 23112, 25608, 28232, 30984, 33864, 36872, 40008, 43272, 46664, 50184, 53832, 57608, 61512, 65544, 69704, 73992, 78408, 82952, 87624, 92424, 97352, 102408
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (16*n^2 + 1)^2 - (64*n^2 + 8)*(2*n)^2 = 1 can be written as A108211(n)^2 - a(n)*A005843(n)^2 = 1. - rewritten by Bruno Berselli, Nov 16 2011

Crossrefs

Programs

  • Magma
    I:=[72,264,584]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 08 2012
    
  • Maple
    A158488:=n->64*n^2+8: seq(A158488(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2017
  • Mathematica
    64Range[40]^2+8 (* or *) LinearRecurrence[{3,-3,1},{72,264,584},40] (* Harvey P. Dale, Nov 16 2011 *)
  • PARI
    for(n=1, 40, print1(64*n^2 + 8", ")); \\ Vincenzo Librandi, Feb 08 2012

Formula

a(1)=72, a(2)=264, a(3)=584, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 16 2011
G.f: x*(72 + 48*x + 8*x^2)/(1-x)^3. - Vincenzo Librandi, Feb 08 2012
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/(2*sqrt(2)))*Pi/(2*sqrt(2)) - 1)/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/(2*sqrt(2)))*Pi/(2*sqrt(2)))/16. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 8*(exp(x)*(8*x^2 + 8*x + 1) - 1).
a(n) = 8*A081585(n). (End)

A239331 Square array, read by antidiagonals: column k has g.f. (1+(k-1)*x)^2/(1-x)^3.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 13, 10, 1, 1, 9, 22, 25, 15, 1, 1, 11, 33, 46, 41, 21, 1, 1, 13, 46, 73, 79, 61, 28, 1, 1, 15, 61, 106, 129, 121, 85, 36, 1, 1, 17, 78, 145, 191, 201, 172, 113, 45, 1, 1, 19, 97, 190, 265, 301, 289, 232, 145, 55, 1, 1, 21
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2014

Keywords

Examples

			Square array begins:
n\k : 0......1......2......3......4......5......6......7......8......9
======================================================================
.0||  1......1......1......1......1......1......1......1......1......1
.1||  1......3......5......7......9.....11.....13.....15.....17.....19
.2||  1......6.....13.....22.....33.....46.....61.....78.....97....118
.3||  1.....10.....25.....46.....73....106....145....190....241....298
.4||  1.....15.....41.....79....129....191....265....351....449....559
.5||  1.....21.....61....121....201....301....421....561....721....901
.6||  1.....28.....85....172....289....436....613....820...1057...1324
.7||  1.....36....113....232....393....596....841...1128...1457...1828
.8||  1.....45....145....301....513....781...1105...1485...1921...2413
.9||  1.....55....181....379....649....991...1405...1891...2449...3079
10||  1.....66....221....466....801...1226...1741...2346...3041...3826
11||  1.....78....265....562....969...1486...2113...2850...3697...4654
		

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k).
T(n,k) = 3*T(n,k-1) - 3*T(n,k-2) + T(n,k-3).
T(n,k) = (T(n,k-1) + T(n,k+1))/2 - A161680(n).
T(n,k) = (T(n-1,k) + T(n+1,k) - A000290(n))/2.

A336288 Numbers of squares formed by this procedure on n-th step: Step 1, draw a unit square. Step n, draw a unit square with center in every intersection of lines of the figure in step n-1.

Original entry on oeis.org

1, 10, 43, 116, 245, 446, 735, 1128, 1641, 2290, 3091, 4060, 5213, 6566, 8135, 9936, 11985, 14298, 16891, 19780, 22981, 26510, 30383, 34616, 39225, 44226, 49635, 55468, 61741, 68470, 75671, 83360, 91553, 100266, 109515, 119316, 129685, 140638, 152191, 164360, 177161
Offset: 1

Views

Author

Ilario Miriello, Jul 16 2020

Keywords

Crossrefs

Cf. A081585.

Programs

  • Magma
    [(8*n^3 - 12*n^2 + 7*n)/3 : n in [1..50]]; // Wesley Ivan Hurt, Jul 16 2020
    
  • Mathematica
    Table[(8*n^3 - 12*n^2 + 7*n)/3, {n, 1, 50}] (* Amiram Eldar, Jul 16 2020 *)
    LinearRecurrence[{4,-6,4,-1},{1,10,43,116},50] (* Harvey P. Dale, Sep 12 2021 *)
  • PARI
    a(n) = (8*n^3 - 12*n^2 + 7*n)/3; \\ Michel Marcus, Jul 16 2020
    
  • PARI
    Vec(x*(1 + 3*x)^2 / (1 - x)^4 + O(x^40)) \\ Colin Barker, Jul 17 2020

Formula

a(n) = (8*n^3 - 12*n^2 + 7*n)/3.
From Colin Barker, Jul 17 2020: (Start)
G.f.: x*(1 + 3*x)^2 / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
E.g.f.: exp(x)*x*(3 + 12*x + 8*x^2)/3. - Stefano Spezia, Jul 23 2020
a(n+1) - a(n) = 8*n^2 + 1 = A081585(n). - Charlie Marion, Mar 21 2022

Extensions

More terms from Michel Marcus, Jul 16 2020
Previous Showing 11-13 of 13 results.