cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A001340 E.g.f.: 2*exp(x)/(1-x)^3.

Original entry on oeis.org

2, 8, 38, 212, 1370, 10112, 84158, 780908, 8000882, 89763320, 1094915222, 14431179908, 204423631178, 3097603939952, 50001759773870, 856665220770332, 15526612798028258, 296825612428239848, 5969385443426556422, 125983618731675924020, 2784204907403441680442
Offset: 0

Views

Author

Keywords

Comments

a(n) = A001339 (n+1) - A001339 (n)..3-1=2, 11-3=8, 49-11=38... [Gary Detlefs, Jun 06 2010]

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[2*Exp[x]/(1 - x)^3, {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)

Formula

a(n) = 2 * A082030(n).
a(n) = floor((n+1)*(n+1)!*e) - floor(n*n!*e) [Gary Detlefs, Jun 06 2010]
a(n) = {exp(1)*(n^2+n+1)*n!} for n>0, where {x} is the neareast integer, proposed by Simon Plouffe, March 1993.
G.f.: (1-x)/x/Q(0) -1/x, where Q(k)= 1 - x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(k+2)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
Conjecture: a(n) +(-n-3)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, May 03 2017

Extensions

Error in description corrected Jan 30 2008
More terms from N. J. A. Sloane, Jan 30 2008

A377811 E.g.f. satisfies A(x) = exp(x * A(x)) / (1 - x)^3.

Original entry on oeis.org

1, 4, 27, 283, 4217, 82971, 2041855, 60475885, 2096566449, 83324680435, 3736041351311, 186594364199277, 10274269171279657, 618386703880855339, 40393224245061185919, 2846030947359659421901, 215160957844217080056161, 17373449685399138641312739, 1492298627191467511376377999
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^3))/(1-x)^3))
    
  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+2*k+2, n-k)/k!);

Formula

E.g.f.: exp( -LambertW(-x/(1-x)^3) )/(1-x)^3.
E.g.f.: -LambertW(-x/(1-x)^3)/x.
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+2*k+2,n-k)/k!.

A095722 E.g.f.: exp(x)/(1-x)^8.

Original entry on oeis.org

1, 9, 89, 961, 11265, 142601, 1940089, 28245729, 438351041, 7226001865, 126122874201, 2324074591169, 45094140207169, 919088049256521, 19633713260950265, 438708172312264801, 10234490436580101249
Offset: 0

Views

Author

Philippe Deléham, Jul 08 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k gives A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n) for x = 1, 2, 3, 4, 5, 6, 7 respectively.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x]/(1-x)^8,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 26 2013 *)
    Table[HypergeometricPFQ[{8, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*8^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+7)! / 7!.
a(n) = 2F0(8,-n;;-1). - Benedict W. J. Irwin, May 27 2016

A082031 Expansion of e.g.f. exp(2*x)/(1-x)^3.

Original entry on oeis.org

1, 5, 28, 176, 1240, 9752, 85120, 819296, 8639872, 99209600, 1233416704, 16517058560, 237137769472, 3634932675584, 59263206154240, 1024222802014208, 18706559855656960, 360062627304341504, 7285354765603176448
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Binomial transform of A082030

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[2x]/(1-x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 28 2013 *)

Formula

E.g.f.: exp(2*x)/(1-x)^3.
Conjecture: a(n) +(-n-4)*a(n-1) +2*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
From Peter Bala, Sep 20 2013: (Start)
a(n) = (1/2)*( Sum_{k = 0..n} (k+2)!*binomial(n,k)*2^(n-k) ).
Based on this series the ZeilbergerRecurrence command in Maple 17 produces the first-order recurrence (n^2 - 3*n + 4)*a(n) = 2^(n+2) + n*(n^2 - n + 2)*a(n-1). Using this it is easy to verify the second-order recurrence conjectured above by Mathar.
The sequence b(n) := n!*(1 + n*(n-1)/2) = n!*A000124(n-1) also satisfies Mathar's recurrence equation but with starting values b(0) = b(1) = 1. This yields the finite continued fraction expansion a(n)/b(n) = 1/(1 - 4/(5 - 2/(6 - 4/(7 - ... - (2*n - 2)/(n + 4) )))), valid for n >= 2.
Lim_{n -> infinity} a(n)/b(n) = e^2 = 1/(1 - 4/(5 - 2/(6 - 4/(7 - ... - (2*n - 2)/(n + 4 - ...))))).
It can be shown that a(n+1)/b(n+1) = 1 + 16*( Sum_{k = 0..n} 2^k/((k + 1)!*(k^4 + 3*k^2 + 4)) ). Taking the limit gives the series acceleration result e^2 = 1 + 16*( Sum_{k = 0..infinity} 2^k/((k+1)!*(k^4 + 3*k^2 + 4)) ). Cf. A082030 and A052124. (End)

A095740 E.g.f.: exp(x)/(1-x)^9.

Original entry on oeis.org

1, 10, 109, 1288, 16417, 224686, 3288205, 51263164, 848456353, 14862109042, 274743964621, 5346258202000, 109249238631169, 2339328151461718, 52384307381414317, 1224472783033479556, 29826054965115774145
Offset: 0

Views

Author

Philippe Deléham Jul 09 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k gives A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n), A095722(n) for x = 1, 2, 3, 4, 5, 6, 7, 8.

Programs

  • Maple
    seq(simplify(hypergeom([9,-n],[],-1)),n=0..30); # Robert Israel, May 27 2016
  • Mathematica
    Table[HypergeometricPFQ[{9, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*9^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+8)!/8!.
a(n) = 2F0(9,-n;;-1). - Benedict W. J. Irwin, May 27 2016
a(n) = ((n^8 + 28*n^7 + 350*n^6 + 2492*n^5 + 10899*n^4 + 29596*n^3 + 48082*n^2 + 42048*n + 14833) * Gamma(n+1,1)*e + n^7 + 28*n^6 + 349*n^5 + 2465*n^4 + 10579*n^3 + 27501*n^2 + 40132*n + 25487) / 40320. - Robert Israel, May 27 2016

A367962 Triangle read by rows. T(n, k) = Sum_{j=0..k} (n!/j!).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 12, 15, 16, 24, 48, 60, 64, 65, 120, 240, 300, 320, 325, 326, 720, 1440, 1800, 1920, 1950, 1956, 1957, 5040, 10080, 12600, 13440, 13650, 13692, 13699, 13700, 40320, 80640, 100800, 107520, 109200, 109536, 109592, 109600, 109601
Offset: 0

Views

Author

Peter Luschny, Dec 06 2023

Keywords

Examples

			  [0]   1;
  [1]   1,    2;
  [2]   2,    4,    5;
  [3]   6,   12,   15,   16;
  [4]  24,   48,   60,   64,   65;
  [5] 120,  240,  300,  320,  325,  326;
  [6] 720, 1440, 1800, 1920, 1950, 1956, 1957;
		

Crossrefs

Cf. A094587, A000142 (T(n, 0)), A052849 (T(n, 1)), A000522 (T(n, n)), A007526 (T(n,n-1)), A038154 (T(n, n-2)), A355268 (T(n, n/2)), A367963(n) (T(2*n, n)/n!).
Cf. A001339 (row sums), A087208 (alternating row sums), A082030 (accumulated sums), A053482, A331689.

Programs

  • Maple
    T := (n, k) -> add(n!/j!, j = 0..k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    Module[{n=1},NestList[Append[n#,1+Last[#]n++]&,{1},10]] (* or *)
    Table[Sum[n!/j!,{j,0,k}],{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 07 2023 *)
  • Python
    from functools import cache
    @cache
    def a_row(n: int) -> list[int]:
        if n == 0: return [1]
        row = a_row(n - 1) + [0]
        for k in range(n): row[k] *= n
        row[n] = row[n - 1] + 1
        return row
  • SageMath
    def T(n, k): return sum(falling_factorial(n, n - j) for j in range(k + 1))
    for n in range(9): print([T(n, k) for k in range(n + 1)])
    

Formula

T(n, k) = A094587(n, k) * A000522(k).
T(n, k) = e * (n! / k!) * Gamma(k + 1, 1).
Sum_{k=0..n} T(n, k) * 2^(n - k) = A053482(n).
Sum_{k=0..n} T(n, k) * binomial(n, k) = A331689(n).
Recurrence: T(n, n) = T(n, n-1) + 1 starting with T(0, 0) = 1.
For k <> n: T(n, k) = n * T(n-1, k).

A267849 Triangular array: T(n,k) is the 2-row creation rook number to place k rooks on a 3 x n board.

Original entry on oeis.org

1, 1, 3, 1, 6, 12, 1, 9, 36, 60, 1, 12, 72, 240, 360, 1, 15, 120, 600, 1800, 2520, 1, 18, 180, 1200, 5400, 15120, 20160, 1, 21, 252, 2100, 12600, 52920, 141120, 181440, 1, 24, 336, 3360, 25200, 141120, 564480, 1451520, 1814400, 1, 27, 432, 5040, 45360, 317520, 1693440, 6531840, 16329600, 19958400
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of ways to place k rooks in a 3 x n Ferrers board (or diagram) under the Goldman-Haglund i-row creation rook mode for i=2. All row heights are 3.

Examples

			The triangle T(n,k) begins in row n=0 with columns 0<=k<=n:
     1
     1      3
     1      6     12
     1      9     36     60
     1     12     72    240    360
     1     15    120    600   1800   2520
     1     18    180   1200   5400  15120  20160
     1     21    252   2100  12600  52920 141120 181440
     1     24    336   3360  25200 141120 564480 1451520 1814400
     1     27    432   5040  45360 317520 1693440 6531840 16329600 19958400
		

Crossrefs

Cf. A013610 (1-rook coefficients on the 3xn board), A121757 (2-rook coeffs. on the 2xn board), A013609 (1-rook coeffs. on the 2xn board), A013611 (1-rook coeffs. on the 4xn board), A008279 (2-rook coeffs. on the 1xn board), A082030 (row sums?), A049598 (column k=2), A007531 (column k=3 w/o factor 10), A001710 (diagonal?).

Formula

T(n,k) = T(n-1,k) + (k+2) T(n-1,k-1) subject to T(0,0)=1, T(n,k)=0 for n

Extensions

Triangle simplified (reversing rows, offset 0). - R. J. Mathar, May 03 2017
Previous Showing 11-17 of 17 results.